Properties

Label 81120bi
Number of curves $4$
Conductor $81120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 81120bi have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 81120bi do not have complex multiplication.

Modular form 81120.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} + 4 q^{11} - q^{15} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 81120bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
81120.x3 81120bi1 \([0, -1, 0, -1070, -4200]\) \(438976/225\) \(69506049600\) \([2, 2]\) \(73728\) \(0.77263\) \(\Gamma_0(N)\)-optimal
81120.x4 81120bi2 \([0, -1, 0, 4000, -36648]\) \(2863288/1875\) \(-4633736640000\) \([2]\) \(147456\) \(1.1192\)  
81120.x2 81120bi3 \([0, -1, 0, -9520, 357460]\) \(38614472/405\) \(1000887114240\) \([2]\) \(147456\) \(1.1192\)  
81120.x1 81120bi4 \([0, -1, 0, -13745, -615135]\) \(14526784/15\) \(296559144960\) \([2]\) \(147456\) \(1.1192\)