Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3+x^2+2479x-504321\) | (homogenize, simplify) | 
| \(y^2z=x^3+x^2z+2479xz^2-504321z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3+200772x-368252352\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(82, 507)$ | $1.8401096164218207226878542015$ | $\infty$ | 
| $(186, 2535)$ | $2.9181747750330263336103073279$ | $\infty$ | 
| $(69, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(69, 0\right) \), \((82,\pm 507)\), \((186,\pm 2535)\), \((469,\pm 10200)\), \((1369,\pm 50700)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 81120 \) | = | $2^{5} \cdot 3 \cdot 5 \cdot 13^{2}$ |  | 
| Discriminant: | $\Delta$ | = | $-111209679360000$ | = | $-1 \cdot 2^{12} \cdot 3^{2} \cdot 5^{4} \cdot 13^{6} $ |  | 
| j-invariant: | $j$ | = | \( \frac{85184}{5625} \) | = | $2^{6} \cdot 3^{-2} \cdot 5^{-4} \cdot 11^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3747941196655699299944040385$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.60082773962514374744957180374$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.1500905082842972$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5199456382428296$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 2$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.9096705086610215523643037522$ |  | 
| Real period: | $\Omega$ | ≈ | $0.28284092311146208234731799982$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2\cdot2^{2} $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $11.109245910742439428225487527 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 11.109245911 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.282841 \cdot 4.909671 \cdot 32}{2^2} \\ & \approx 11.109245911\end{aligned}$$
Modular invariants
Modular form 81120.2.a.bd
For more coefficients, see the Downloads section to the right.
| Modular degree: | 294912 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{3}^{*}$ | additive | 1 | 5 | 12 | 0 | 
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
| $5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $13$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.12.0.9 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 131 & 754 \\ 2886 & 2315 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 64 & 205 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 495 & 962 \\ 1742 & 2627 \end{array}\right),\left(\begin{array}{rr} 479 & 0 \\ 0 & 3119 \end{array}\right),\left(\begin{array}{rr} 2497 & 1924 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 4 & 49 \end{array}\right),\left(\begin{array}{rr} 2250 & 2431 \\ 1859 & 2718 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 3105 & 16 \\ 3104 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[3120])$ is a degree-$77290536960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 169 = 13^{2} \) | 
| $3$ | split multiplicative | $4$ | \( 27040 = 2^{5} \cdot 5 \cdot 13^{2} \) | 
| $5$ | nonsplit multiplicative | $6$ | \( 16224 = 2^{5} \cdot 3 \cdot 13^{2} \) | 
| $13$ | additive | $86$ | \( 480 = 2^{5} \cdot 3 \cdot 5 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 81120.bd
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 480.c4, its twist by $-52$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-13}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(i, \sqrt{13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.151613669376.3 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.4.1516136693760000.41 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.74870947840000.69 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | nonsplit | ord | ss | add | ord | ss | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 3 | 2 | 2 | 2,2 | - | 2 | 2,2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0,0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
