Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2+5753187x+641403531\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z+5753187xz^2+641403531z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+7456130325x+29813481195750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-445/4, 441/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 80850 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-12363640347802734375000$ | = | $-1 \cdot 2^{3} \cdot 3 \cdot 5^{14} \cdot 7^{8} \cdot 11^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{11456208593737991}{6725709375000} \) | = | $2^{-3} \cdot 3^{-1} \cdot 5^{-8} \cdot 7^{-2} \cdot 11^{-4} \cdot 225431^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9284799634613846873862916566$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1508059327166778475332356183$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0150912911963035$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.159963374475705$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.076834559732294522097511118390$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 3\cdot1\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $3.6880588671501370606805336827 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.688058867 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.076835 \cdot 1.000000 \cdot 192}{2^2} \\ & \approx 3.688058867\end{aligned}$$
Modular invariants
Modular form 80850.2.a.ei
For more coefficients, see the Downloads section to the right.
| Modular degree: | 7077888 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $4$ | $I_{8}^{*}$ | additive | 1 | 2 | 14 | 8 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 5543 & 0 \\ 0 & 9239 \end{array}\right),\left(\begin{array}{rr} 9233 & 8 \\ 9232 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5636 & 2905 \\ 5215 & 5286 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 9234 & 9235 \end{array}\right),\left(\begin{array}{rr} 5776 & 5915 \\ 1225 & 8646 \end{array}\right),\left(\begin{array}{rr} 3959 & 0 \\ 0 & 9239 \end{array}\right),\left(\begin{array}{rr} 2521 & 4760 \\ 3220 & 561 \end{array}\right),\left(\begin{array}{rr} 5251 & 8680 \\ 3290 & 1821 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$19619905536000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 13475 = 5^{2} \cdot 7^{2} \cdot 11 \) |
| $5$ | additive | $18$ | \( 3234 = 2 \cdot 3 \cdot 7^{2} \cdot 11 \) |
| $7$ | additive | $32$ | \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 80850.ei
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2310.c4, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{70}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-105}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-6}, \sqrt{70})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.4588382453760000.336 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 |
|---|---|---|---|---|---|
| Reduction type | split | nonsplit | add | add | split |
| $\lambda$-invariant(s) | 8 | 2 | - | - | 1 |
| $\mu$-invariant(s) | 2 | 0 | - | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.