Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2+16857x-238595\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z+16857xz^2-238595z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+269709x-15000370\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(206, 3353)$ | $2.3406629693714654143728071867$ | $\infty$ |
| $(17, 221)$ | $2.9727704561714679424241515251$ | $\infty$ |
| $(14, -7)$ | $0$ | $2$ |
Integral points
\( \left(14, -7\right) \), \( \left(17, 221\right) \), \( \left(17, -238\right) \), \( \left(135, 2050\right) \), \( \left(135, -2185\right) \), \( \left(158, 2441\right) \), \( \left(158, -2599\right) \), \( \left(206, 3353\right) \), \( \left(206, -3559\right) \), \( \left(5822, 441401\right) \), \( \left(5822, -447223\right) \), \( \left(15137, 1854797\right) \), \( \left(15137, -1869934\right) \)
Invariants
| Conductor: | $N$ | = | \( 80586 \) | = | $2 \cdot 3^{2} \cdot 11^{2} \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $-330285184263936$ | = | $-1 \cdot 2^{8} \cdot 3^{9} \cdot 11^{6} \cdot 37 $ |
|
| j-invariant: | $j$ | = | \( \frac{410172407}{255744} \) | = | $2^{-8} \cdot 3^{-3} \cdot 37^{-1} \cdot 743^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4750007090590851235718887235$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.27325307167415499415670568394$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.064286922665558$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6125381711157685$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.6188996335314163396323471388$ |
|
| Real period: | $\Omega$ | ≈ | $0.31212163741608011824268851428$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2^{2}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.0151206163777527310725881535 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.015120616 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.312122 \cdot 5.618900 \cdot 16}{2^2} \\ & \approx 7.015120616\end{aligned}$$
Modular invariants
Modular form 80586.2.a.e
For more coefficients, see the Downloads section to the right.
| Modular degree: | 368640 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
| $3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $37$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9768 = 2^{3} \cdot 3 \cdot 11 \cdot 37 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 4555 & 4554 \\ 8338 & 8779 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5620 & 6215 \\ 9449 & 1770 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 9761 & 8 \\ 9760 & 9 \end{array}\right),\left(\begin{array}{rr} 3551 & 0 \\ 0 & 9767 \end{array}\right),\left(\begin{array}{rr} 1673 & 6996 \\ 4334 & 4775 \end{array}\right),\left(\begin{array}{rr} 7712 & 891 \\ 8261 & 3554 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 9762 & 9763 \end{array}\right)$.
The torsion field $K:=\Q(E[9768])$ is a degree-$36944982835200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9768\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 40293 = 3^{2} \cdot 11^{2} \cdot 37 \) |
| $3$ | additive | $6$ | \( 8954 = 2 \cdot 11^{2} \cdot 37 \) |
| $11$ | additive | $62$ | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
| $37$ | split multiplicative | $38$ | \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 80586q
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 222c1, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-111}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{1221}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-11}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-11}, \sqrt{-111})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.3042748828687689.6 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.3740603556096.28 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | ord | ss | add | ord | ord | ord | ss | ord | ord | split | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | - | 2 | 2,2 | - | 2 | 2 | 2 | 2,2 | 2 | 2 | 3 | 2 | 2 | 2 |
| $\mu$-invariant(s) | 0 | - | 0 | 0,0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.