Properties

Label 80586c
Number of curves $1$
Conductor $80586$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 80586c1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 80586c do not have complex multiplication.

Modular form 80586.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 4 q^{7} - q^{8} - q^{10} - 4 q^{13} + 4 q^{14} + q^{16} + 5 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 80586c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
80586.n1 80586c1 \([1, -1, 0, -864, -27648]\) \(-73560059/303104\) \(-294101508096\) \([]\) \(119808\) \(0.88581\) \(\Gamma_0(N)\)-optimal