Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2+2155x-280915\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z+2155xz^2-280915z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+34485x-17944058\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(201, 2770)$ | $2.2239098350123603746896739902$ | $\infty$ |
| $(91, 768)$ | $0$ | $3$ |
Integral points
\( \left(91, 768\right) \), \( \left(91, -860\right) \), \( \left(201, 2770\right) \), \( \left(201, -2972\right) \), \( \left(831, 23560\right) \), \( \left(831, -24392\right) \)
Invariants
| Conductor: | $N$ | = | \( 80586 \) | = | $2 \cdot 3^{2} \cdot 11^{2} \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $-34600582893888$ | = | $-1 \cdot 2^{6} \cdot 3^{6} \cdot 11^{4} \cdot 37^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{103742375}{3241792} \) | = | $2^{-6} \cdot 5^{3} \cdot 11^{2} \cdot 19^{3} \cdot 37^{-3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2779170790008950792393620576$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.070687489599283281145575086849$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9523968414365175$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.4177785593348218$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.2239098350123603746896739902$ |
|
| Real period: | $\Omega$ | ≈ | $0.31518855988114795798537379040$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 108 $ = $ ( 2 \cdot 3 )\cdot2\cdot3\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.4114112584368066826224315362 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.411411258 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.315189 \cdot 2.223910 \cdot 108}{3^2} \\ & \approx 8.411411258\end{aligned}$$
Modular invariants
Modular form 80586.2.a.y
For more coefficients, see the Downloads section to the right.
| Modular degree: | 238464 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $11$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $37$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 444 = 2^{2} \cdot 3 \cdot 37 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 223 & 6 \\ 225 & 19 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 439 & 6 \\ 438 & 7 \end{array}\right),\left(\begin{array}{rr} 409 & 6 \\ 339 & 19 \end{array}\right),\left(\begin{array}{rr} 34 & 405 \\ 101 & 437 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[444])$ is a degree-$524786688$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/444\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 40293 = 3^{2} \cdot 11^{2} \cdot 37 \) |
| $3$ | additive | $6$ | \( 121 = 11^{2} \) |
| $11$ | additive | $52$ | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
| $37$ | split multiplicative | $38$ | \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 80586.y
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 8954.b2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.17908.1 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.47463076672.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.32019867.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $9$ | 9.3.463791452710542956353728.1 | \(\Z/9\Z\) | not in database |
| $12$ | deg 12 | \(\Z/12\Z\) | not in database |
| $18$ | 18.0.345007759951667207076137133545336832.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | ss | ord | add | ord | ord | ord | ord | ss | ord | split | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | - | 1,3 | 1 | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 2 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.