Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-40233672x+94613889024\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-40233672xz^2+94613889024z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-643738755x+6054645158782\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3072, -1536)$ | $0$ | $2$ |
Integral points
\( \left(3072, -1536\right) \)
Invariants
Conductor: | $N$ | = | \( 80586 \) | = | $2 \cdot 3^{2} \cdot 11^{2} \cdot 37$ |
|
Discriminant: | $\Delta$ | = | $301854042633377482915392$ | = | $2^{6} \cdot 3^{17} \cdot 11^{7} \cdot 37^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{5577108481460841625}{233729407061568} \) | = | $2^{-6} \cdot 3^{-11} \cdot 5^{3} \cdot 11^{-1} \cdot 37^{-4} \cdot 354677^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2701460885335135401736881892$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5218923078002734224450937818$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9869944369461394$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.677949192558976$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.096110940326808353703246851102$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.5377750452289336592519496176 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.537775045 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.096111 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 1.537775045\end{aligned}$$
Modular invariants
Modular form 80586.2.a.k
For more coefficients, see the Downloads section to the right.
Modular degree: | 12165120 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$3$ | $2$ | $I_{11}^{*}$ | additive | -1 | 2 | 17 | 11 |
$11$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$37$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 178 & 1 \\ 175 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 26 & 1 \\ 119 & 0 \end{array}\right),\left(\begin{array}{rr} 261 & 4 \\ 260 & 5 \end{array}\right),\left(\begin{array}{rr} 169 & 100 \\ 32 & 231 \end{array}\right),\left(\begin{array}{rr} 133 & 4 \\ 2 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$81100800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 1089 = 3^{2} \cdot 11^{2} \) |
$3$ | additive | $8$ | \( 4477 = 11^{2} \cdot 37 \) |
$11$ | additive | $72$ | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
$37$ | split multiplicative | $38$ | \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 80586.k
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 2442.f1, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.2112.2 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.4857532416.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.1322463200256.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 11 | 37 |
---|---|---|---|---|
Reduction type | nonsplit | add | add | split |
$\lambda$-invariant(s) | 3 | - | - | 1 |
$\mu$-invariant(s) | 0 | - | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.