Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3-x^2-60462x+5192248\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3-x^2z-60462xz^2+5192248z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-967395x+331336478\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(3, 2237)$ | $1.3006550082390285961486522134$ | $\infty$ | 
| $(-118, 3326)$ | $1.9395348109905252752878535064$ | $\infty$ | 
| $(419/4, -419/8)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-228, 2776\right) \), \( \left(-228, -2548\right) \), \( \left(-118, 3326\right) \), \( \left(-118, -3208\right) \), \( \left(3, 2237\right) \), \( \left(3, -2240\right) \), \( \left(177, 22\right) \), \( \left(177, -199\right) \), \( \left(188, 572\right) \), \( \left(188, -760\right) \), \( \left(377, 5801\right) \), \( \left(377, -6178\right) \), \( \left(2186, 100472\right) \), \( \left(2186, -102658\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 80586 \) | = | $2 \cdot 3^{2} \cdot 11^{2} \cdot 37$ |  | 
| Discriminant: | $\Delta$ | = | $2567164531162572$ | = | $2^{2} \cdot 3^{7} \cdot 11^{8} \cdot 37^{2} $ |  | 
| j-invariant: | $j$ | = | \( \frac{18927429625}{1987788} \) | = | $2^{-2} \cdot 3^{-1} \cdot 5^{3} \cdot 11^{-2} \cdot 13^{3} \cdot 37^{-2} \cdot 41^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6916439578318930044103965598$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.056609822901347113318197847643$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.8630044190925265$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9517222613706204$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 2$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.1519762566890926354118557498$ |  | 
| Real period: | $\Omega$ | ≈ | $0.44284212205750704724315840060$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2^{2}\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.6238858570365462174394669078 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 7.623885857 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.442842 \cdot 2.151976 \cdot 32}{2^2} \\ & \approx 7.623885857\end{aligned}$$
Modular invariants
Modular form 80586.2.a.j
For more coefficients, see the Downloads section to the right.
| Modular degree: | 368640 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 | 
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $11$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 | 
| $37$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4884 = 2^{2} \cdot 3 \cdot 11 \cdot 37 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 4881 & 4 \\ 4880 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1630 & 1 \\ 1627 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1333 & 4 \\ 2666 & 9 \end{array}\right),\left(\begin{array}{rr} 3961 & 4 \\ 3038 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3664 & 1225 \\ 1221 & 3664 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[4884])$ is a degree-$9236245708800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4884\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1089 = 3^{2} \cdot 11^{2} \) | 
| $3$ | additive | $8$ | \( 8954 = 2 \cdot 11^{2} \cdot 37 \) | 
| $11$ | additive | $72$ | \( 666 = 2 \cdot 3^{2} \cdot 37 \) | 
| $37$ | split multiplicative | $38$ | \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 80586.j
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 2442.c1, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.0.1987788.1 | \(\Z/4\Z\) | not in database | 
| $8$ | 8.4.59849656897536.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.568987363143936.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | ss | ord | add | ord | ord | ss | ord | ord | ord | split | ss | ord | ss | 
| $\lambda$-invariant(s) | 3 | - | 2,2 | 4 | - | 2 | 2 | 2,2 | 2 | 2 | 2 | 3 | 4,2 | 2 | 2,2 | 
| $\mu$-invariant(s) | 0 | - | 0,0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
