Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-1674905x+306464249\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-1674905xz^2+306464249z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-26798475x+19586913478\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(7, 17164)$ | $3.3807825174643635221972887311$ | $\infty$ |
| $(1191, -596)$ | $0$ | $2$ |
Integral points
\( \left(-987, 32074\right) \), \( \left(-987, -31088\right) \), \( \left(7, 17164\right) \), \( \left(7, -17172\right) \), \( \left(1191, -596\right) \)
Invariants
| Conductor: | $N$ | = | \( 80586 \) | = | $2 \cdot 3^{2} \cdot 11^{2} \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $260248871511136899072$ | = | $2^{12} \cdot 3^{9} \cdot 11^{9} \cdot 37^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{402355893390625}{201513996288} \) | = | $2^{-12} \cdot 3^{-3} \cdot 5^{6} \cdot 11^{-3} \cdot 37^{-2} \cdot 2953^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6101276794117216216719497533$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.86187389867848150394335534585$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0125399750027195$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.833762569077999$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.3807825174643635221972887311$ |
|
| Real period: | $\Omega$ | ≈ | $0.15465992426718001150324318815$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ ( 2^{2} \cdot 3 )\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $12.548917634756271526979930368 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 12.548917635 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.154660 \cdot 3.380783 \cdot 96}{2^2} \\ & \approx 12.548917635\end{aligned}$$
Modular invariants
Modular form 80586.2.a.bc
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3317760 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $3$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $11$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $37$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4884 = 2^{2} \cdot 3 \cdot 11 \cdot 37 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 11 & 2 \\ 4834 & 4875 \end{array}\right),\left(\begin{array}{rr} 4873 & 12 \\ 4872 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1322 & 4881 \\ 1803 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 3250 & 4873 \\ 3267 & 20 \end{array}\right),\left(\begin{array}{rr} 3961 & 12 \\ 4230 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2859 & 4480 \\ 2822 & 4469 \end{array}\right)$.
The torsion field $K:=\Q(E[4884])$ is a degree-$1154530713600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4884\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1089 = 3^{2} \cdot 11^{2} \) |
| $3$ | additive | $2$ | \( 4477 = 11^{2} \cdot 37 \) |
| $11$ | additive | $72$ | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
| $37$ | split multiplicative | $38$ | \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 80586.bc
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 2442.h4, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | 4.4.45177.1 | \(\Z/4\Z\) | not in database |
| $6$ | 6.0.22450574619.1 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.8.2222606887281.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $18$ | 18.6.334091497865080527222790605741607511094045216768.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | ss | ord | add | ord | ord | ord | ord | ord | ord | split | ord | ord | ss |
| $\lambda$-invariant(s) | 5 | - | 3,1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 0 | - | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.