Properties

Label 8004.c
Number of curves $1$
Conductor $8004$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 8004.c1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(23\)\(1 + T\)
\(29\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8004.c do not have complex multiplication.

Modular form 8004.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + 3 q^{7} + q^{9} + 3 q^{11} + q^{13} - 2 q^{15} - 5 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 8004.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8004.c1 8004c1 \([0, 1, 0, -8414, 294297]\) \(-4117777414120192/301956903\) \(-4831310448\) \([]\) \(8208\) \(0.90878\) \(\Gamma_0(N)\)-optimal