Properties

Label 8001.g
Number of curves $1$
Conductor $8001$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 8001.g1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1 + T\)
\(127\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8001.g do not have complex multiplication.

Modular form 8001.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + 2 q^{4} + q^{5} - q^{7} + 2 q^{10} - q^{13} - 2 q^{14} - 4 q^{16} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 8001.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8001.g1 8001a1 \([0, 0, 1, -297, -1897]\) \(147197952/6223\) \(122487309\) \([]\) \(3648\) \(0.31645\) \(\Gamma_0(N)\)-optimal