Properties

Label 8001.b
Number of curves $1$
Conductor $8001$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 8001.b1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1 + T\)
\(127\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8001.b do not have complex multiplication.

Modular form 8001.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} - q^{5} - q^{7} + 2 q^{10} - q^{13} + 2 q^{14} - 4 q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 8001.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8001.b1 8001b1 \([0, 0, 1, -33, 70]\) \(147197952/6223\) \(168021\) \([]\) \(1216\) \(-0.23285\) \(\Gamma_0(N)\)-optimal