Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-15794x+640704\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-15794xz^2+640704z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1279341x+463235220\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(47, 0)$ | $0$ | $2$ |
| $(96, 0)$ | $0$ | $2$ |
Integral points
\( \left(-142, 0\right) \), \( \left(47, 0\right) \), \( \left(96, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 79968 \) | = | $2^{5} \cdot 3 \cdot 7^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $77730178526784$ | = | $2^{6} \cdot 3^{6} \cdot 7^{8} \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{57870788032}{10323369} \) | = | $2^{6} \cdot 3^{-6} \cdot 7^{-2} \cdot 17^{-2} \cdot 967^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3846563867002853285462482787$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.065127721892656021284955846248$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9013779781974766$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.59770119798797$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.58183928442756572879617319412$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.1636785688551314575923463882 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.163678569 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.581839 \cdot 1.000000 \cdot 32}{4^2} \\ & \approx 1.163678569\end{aligned}$$
Modular invariants
Modular form 79968.2.a.f
For more coefficients, see the Downloads section to the right.
| Modular degree: | 258048 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III$ | additive | -1 | 5 | 6 | 0 |
| $3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $17$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1429 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2689 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2447 & 2852 \\ 2038 & 2847 \end{array}\right),\left(\begin{array}{rr} 2853 & 4 \\ 2852 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 2 \\ 950 & 2855 \end{array}\right),\left(\begin{array}{rr} 717 & 2 \\ 1426 & 2855 \end{array}\right)$.
The torsion field $K:=\Q(E[2856])$ is a degree-$242573377536$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2856\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 49 = 7^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 26656 = 2^{5} \cdot 7^{2} \cdot 17 \) |
| $7$ | additive | $32$ | \( 1632 = 2^{5} \cdot 3 \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 4704 = 2^{5} \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 79968.f
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 11424.g3, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{238}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-21}, \sqrt{102})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.1064517474779136.104 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 7 | 17 |
|---|---|---|---|---|
| Reduction type | add | nonsplit | add | split |
| $\lambda$-invariant(s) | - | 0 | - | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.