Properties

Label 78650.be
Number of curves $1$
Conductor $78650$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 78650.be1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 78650.be do not have complex multiplication.

Modular form 78650.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} + 2 q^{7} - q^{8} - 2 q^{9} + q^{12} + q^{13} - 2 q^{14} + q^{16} + q^{17} + 2 q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 78650.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
78650.be1 78650n1 \([1, 0, 1, -406926, -97858752]\) \(2224882033/53248\) \(178346588992000000\) \([]\) \(811008\) \(2.0950\) \(\Gamma_0(N)\)-optimal