Properties

Label 78588i
Number of curves $1$
Conductor $78588$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 78588i1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(37\)\(1 + T\)
\(59\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 78588i do not have complex multiplication.

Modular form 78588.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{7} + 4 q^{11} - q^{13} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 78588i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
78588.m1 78588i1 \([0, 0, 0, -9, -243]\) \(-6912/2183\) \(-25462512\) \([]\) \(14592\) \(0.10024\) \(\Gamma_0(N)\)-optimal