Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2+69910x-30850975\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z+69910xz^2-30850975z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+5662683x-22507348851\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 77740 \) | = | $2^{2} \cdot 5 \cdot 13^{2} \cdot 23$ |
|
Discriminant: | $\Delta$ | = | $-433658621093750000$ | = | $-1 \cdot 2^{4} \cdot 5^{12} \cdot 13^{6} \cdot 23 $ |
|
j-invariant: | $j$ | = | \( \frac{489277573376}{5615234375} \) | = | $2^{8} \cdot 5^{-12} \cdot 17^{3} \cdot 23^{-1} \cdot 73^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0652001788323900513650917311$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.55167643991497324686593730316$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.147813072895248$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.263695911280969$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.14643924113422793709194811463$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 36 $ = $ 3\cdot( 2^{2} \cdot 3 )\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $5.2718126808322057353101321265 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 5.271812681 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.146439 \cdot 1.000000 \cdot 36}{1^2} \\ & \approx 5.271812681\end{aligned}$$
Modular invariants
Modular form 77740.2.a.m
For more coefficients, see the Downloads section to the right.
Modular degree: | 1010880 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
$5$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
$13$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$23$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1794 = 2 \cdot 3 \cdot 13 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 1103 & 0 \\ 0 & 1793 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 1789 & 6 \\ 1788 & 7 \end{array}\right),\left(\begin{array}{rr} 235 & 1248 \\ 429 & 157 \end{array}\right),\left(\begin{array}{rr} 716 & 117 \\ 1183 & 1249 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1794])$ is a degree-$126034900992$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1794\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 3887 = 13^{2} \cdot 23 \) |
$3$ | good | $2$ | \( 15548 = 2^{2} \cdot 13^{2} \cdot 23 \) |
$5$ | split multiplicative | $6$ | \( 15548 = 2^{2} \cdot 13^{2} \cdot 23 \) |
$13$ | additive | $86$ | \( 460 = 2^{2} \cdot 5 \cdot 23 \) |
$23$ | split multiplicative | $24$ | \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 77740l
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 460c2, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-39}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.23.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.12167.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.88532737488.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.31379751.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.6332668237311320855797891937830431000000000000.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.367085602467491753630390868184485888.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | split | ord | ord | add | ss | ord | split | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 4 | 1 | 0 | 0 | - | 0,0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | 1 | 0 | 0 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.