Properties

Label 77616.fq
Number of curves $4$
Conductor $77616$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 77616.fq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 77616.fq do not have complex multiplication.

Modular form 77616.2.a.fq

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + q^{11} - 2 q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 77616.fq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
77616.fq1 77616ch4 \([0, 0, 0, -208299, -36586438]\) \(5690357426/891\) \(156503273084928\) \([2]\) \(393216\) \(1.7347\)  
77616.fq2 77616ch2 \([0, 0, 0, -14259, -456190]\) \(3650692/1089\) \(95640889107456\) \([2, 2]\) \(196608\) \(1.3881\)  
77616.fq3 77616ch1 \([0, 0, 0, -5439, 148862]\) \(810448/33\) \(724552190208\) \([2]\) \(98304\) \(1.0415\) \(\Gamma_0(N)\)-optimal
77616.fq4 77616ch3 \([0, 0, 0, 38661, -3049270]\) \(36382894/43923\) \(-7715031721334784\) \([2]\) \(393216\) \(1.7347\)