Properties

Label 774a
Number of curves $2$
Conductor $774$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 774a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 774a do not have complex multiplication.

Modular form 774.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 3 q^{5} - q^{7} - q^{8} - 3 q^{10} + 3 q^{11} - q^{13} + q^{14} + q^{16} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 774a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
774.e2 774a1 \([1, -1, 0, 57, -243]\) \(751089429/1272112\) \(-34347024\) \([3]\) \(192\) \(0.13099\) \(\Gamma_0(N)\)-optimal
774.e1 774a2 \([1, -1, 0, -1878, -30988]\) \(-37226247219/176128\) \(-3466727424\) \([]\) \(576\) \(0.68029\)