Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-1921x+33057\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-1921xz^2+33057z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-155628x+23631696\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(27, 12)$ | $1.3389217111091188434894210304$ | $\infty$ |
Integral points
\((27,\pm 12)\)
Invariants
| Conductor: | $N$ | = | \( 7744 \) | = | $2^{6} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-31719424$ | = | $-1 \cdot 2^{18} \cdot 11^{2} $ |
|
| j-invariant: | $j$ | = | \( -24729001 \) | = | $-1 \cdot 11 \cdot 131^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.52175993272423887474090872434$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.91761005024874084672859672084$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9685335876741098$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8299549859867$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.3389217111091188434894210304$ |
|
| Real period: | $\Omega$ | ≈ | $1.9537421694389756228729388229$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.2318156171425504741400389385 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.231815617 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.953742 \cdot 1.338922 \cdot 2}{1^2} \\ & \approx 5.231815617\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3072 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{8}^{*}$ | additive | -1 | 6 | 18 | 0 |
| $11$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2G | 4.2.0.1 |
| $11$ | 11B.10.5 | 11.60.1.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 88 = 2^{3} \cdot 11 \), index $480$, genus $16$, and generators
$\left(\begin{array}{rr} 45 & 44 \\ 44 & 45 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 44 & 1 \end{array}\right),\left(\begin{array}{rr} 45 & 22 \\ 22 & 1 \end{array}\right),\left(\begin{array}{rr} 12 & 55 \\ 77 & 23 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 44 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 17 & 44 \\ 66 & 81 \end{array}\right),\left(\begin{array}{rr} 43 & 55 \\ 0 & 21 \end{array}\right),\left(\begin{array}{rr} 43 & 44 \\ 22 & 87 \end{array}\right)$.
The torsion field $K:=\Q(E[88])$ is a degree-$42240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/88\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 121 = 11^{2} \) |
| $11$ | additive | $32$ | \( 64 = 2^{6} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
11.
Its isogeny class 7744.be
consists of 2 curves linked by isogenies of
degree 11.
Twists
The minimal quadratic twist of this elliptic curve is 121.a2, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.484.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.937024.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | 8.2.15869558403072.7 | \(\Z/3\Z\) | not in database |
| $10$ | 10.10.77265229938688.1 | \(\Z/11\Z\) | not in database |
| $12$ | 12.2.108789443753672704.4 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ss | ord |
| $\lambda$-invariant(s) | - | 5 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 3 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.