Properties

Label 77064.q
Number of curves $4$
Conductor $77064$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 77064.q have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(13\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 77064.q do not have complex multiplication.

Modular form 77064.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} + 4 q^{11} - 2 q^{15} - 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 77064.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
77064.q1 77064y4 \([0, 1, 0, -4216944, -1121986800]\) \(1677865892403172/861235747047\) \(4256788945887419415552\) \([2]\) \(3870720\) \(2.8424\)  
77064.q2 77064y2 \([0, 1, 0, -3382084, -2392977664]\) \(3462397543530448/3602520441\) \(4451501590349508864\) \([2, 2]\) \(1935360\) \(2.4959\)  
77064.q3 77064y1 \([0, 1, 0, -3381239, -2394233334]\) \(55356847905445888/60021\) \(4635358447824\) \([2]\) \(967680\) \(2.1493\) \(\Gamma_0(N)\)-optimal
77064.q4 77064y3 \([0, 1, 0, -2560744, -3583592128]\) \(-375718260235972/904469833683\) \(-4470480008652398128128\) \([2]\) \(3870720\) \(2.8424\)