Learn more

Refine search


Results (1-50 of 129 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
7650.a1 7650.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.298813182$ $[1, -1, 0, -63492, 6173666]$ \(y^2+xy=x^3-x^2-63492x+6173666\) 408.2.0.?
7650.b1 7650.b \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.402714189$ $[1, -1, 0, -387, 2781]$ \(y^2+xy=x^3-x^2-387x+2781\) 408.2.0.?
7650.c1 7650.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $9.476594965$ $[1, -1, 0, -79155117, 328719189541]$ \(y^2+xy=x^3-x^2-79155117x+328719189541\) 408.2.0.?
7650.d1 7650.d \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.339323997$ $[1, -1, 0, -27, 211]$ \(y^2+xy=x^3-x^2-27x+211\) 408.2.0.?
7650.e1 7650.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -65277, -6403019]$ \(y^2+xy=x^3-x^2-65277x-6403019\) 2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.?
7650.e2 7650.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -4077, -99419]$ \(y^2+xy=x^3-x^2-4077x-99419\) 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.?
7650.f1 7650.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.663306072$ $[1, -1, 0, -17442, -677484]$ \(y^2+xy=x^3-x^2-17442x-677484\) 408.2.0.?
7650.g1 7650.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $7.482224289$ $[1, -1, 0, -937917, 69004741]$ \(y^2+xy=x^3-x^2-937917x+69004741\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$
7650.g2 7650.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.494074763$ $[1, -1, 0, -574542, -167475884]$ \(y^2+xy=x^3-x^2-574542x-167475884\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$
7650.g3 7650.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.247037381$ $[1, -1, 0, -556542, -178473884]$ \(y^2+xy=x^3-x^2-556542x-178473884\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$
7650.g4 7650.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $3.741112144$ $[1, -1, 0, 3670083, 543628741]$ \(y^2+xy=x^3-x^2+3670083x+543628741\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$
7650.h1 7650.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -305742, 67768916]$ \(y^2+xy=x^3-x^2-305742x+67768916\) 408.2.0.?
7650.i1 7650.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -567, -21659]$ \(y^2+xy=x^3-x^2-567x-21659\) 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 680.2.0.?, 2040.16.0.?
7650.i2 7650.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 5058, 557716]$ \(y^2+xy=x^3-x^2+5058x+557716\) 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 680.2.0.?, 2040.16.0.?
7650.j1 7650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -168867, 20235541]$ \(y^2+xy=x^3-x^2-168867x+20235541\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.2, $\ldots$
7650.j2 7650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -57492, -5289584]$ \(y^2+xy=x^3-x^2-57492x-5289584\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.1, $\ldots$
7650.j3 7650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -48492, -7008584]$ \(y^2+xy=x^3-x^2-48492x-7008584\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.1, $\ldots$
7650.j4 7650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 407133, 127947541]$ \(y^2+xy=x^3-x^2+407133x+127947541\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.2, $\ldots$
7650.k1 7650.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $8.730234422$ $[1, -1, 0, -10393542, -12893479884]$ \(y^2+xy=x^3-x^2-10393542x-12893479884\) 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
7650.k2 7650.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.365117211$ $[1, -1, 0, -601542, -232423884]$ \(y^2+xy=x^3-x^2-601542x-232423884\) 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
7650.l1 7650.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.531754438$ $[1, -1, 0, -2292, 42866]$ \(y^2+xy=x^3-x^2-2292x+42866\) 680.2.0.?
7650.m1 7650.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $8.953809985$ $[1, -1, 0, -30957, -2088739]$ \(y^2+xy=x^3-x^2-30957x-2088739\) 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.?
7650.m2 7650.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $2.984603328$ $[1, -1, 0, -357, -3179]$ \(y^2+xy=x^3-x^2-357x-3179\) 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.?
7650.n1 7650.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $2.910376207$ $[1, -1, 0, -6792, -213184]$ \(y^2+xy=x^3-x^2-6792x-213184\) 3.8.0-3.a.1.1, 408.16.0.?
7650.n2 7650.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/3\Z$ $0.970125402$ $[1, -1, 0, -417, 3141]$ \(y^2+xy=x^3-x^2-417x+3141\) 3.8.0-3.a.1.2, 408.16.0.?
7650.o1 7650.o \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -4617, 102541]$ \(y^2+xy=x^3-x^2-4617x+102541\) 408.2.0.?
7650.p1 7650.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 5508, 286416]$ \(y^2+xy=x^3-x^2+5508x+286416\) 408.2.0.?
7650.q1 7650.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.064715943$ $[1, -1, 0, -29742, -1925084]$ \(y^2+xy=x^3-x^2-29742x-1925084\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.k.2, 60.12.0.bk.1, $\ldots$
7650.q2 7650.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.129431887$ $[1, -1, 0, 258, -95084]$ \(y^2+xy=x^3-x^2+258x-95084\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 16.24.0.n.1, 30.6.0.a.1, $\ldots$
7650.r1 7650.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.489673188$ $[1, -1, 0, -10707, 420101]$ \(y^2+xy=x^3-x^2-10707x+420101\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.k.2, 60.12.0.bk.1, $\ldots$
7650.r2 7650.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.979346377$ $[1, -1, 0, 93, 20501]$ \(y^2+xy=x^3-x^2+93x+20501\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 16.24.0.n.1, 30.6.0.a.1, $\ldots$
7650.s1 7650.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -162, -1004]$ \(y^2+xy=x^3-x^2-162x-1004\) 680.2.0.?
7650.t1 7650.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $19.89906373$ $[1, -1, 0, -524155977, 4618652600461]$ \(y^2+xy=x^3-x^2-524155977x+4618652600461\) 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.?
7650.t2 7650.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $6.633021244$ $[1, -1, 0, -13874202, -10555067084]$ \(y^2+xy=x^3-x^2-13874202x-10555067084\) 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.?
7650.u1 7650.u \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -93867, -10225459]$ \(y^2+xy=x^3-x^2-93867x-10225459\) 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.?
7650.u2 7650.u \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -18867, 999541]$ \(y^2+xy=x^3-x^2-18867x+999541\) 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.?
7650.v1 7650.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -5967, 106861]$ \(y^2+xy=x^3-x^2-5967x+106861\) 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.?
7650.v2 7650.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2592, -50144]$ \(y^2+xy=x^3-x^2-2592x-50144\) 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.?
7650.w1 7650.w \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $4.000972767$ $[1, -1, 0, 1758, -61084]$ \(y^2+xy=x^3-x^2+1758x-61084\) 68.2.0.a.1
7650.x1 7650.x \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -85992, 9727416]$ \(y^2+xy=x^3-x^2-85992x+9727416\) 3.8.0-3.a.1.2, 408.16.0.?
7650.x2 7650.x \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -80367, 11050541]$ \(y^2+xy=x^3-x^2-80367x+11050541\) 3.8.0-3.a.1.1, 408.16.0.?
7650.y1 7650.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.928888706$ $[1, -1, 0, -2610567, 1624145341]$ \(y^2+xy=x^3-x^2-2610567x+1624145341\) 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
7650.y2 7650.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.964444353$ $[1, -1, 0, -162567, 25601341]$ \(y^2+xy=x^3-x^2-162567x+25601341\) 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
7650.z1 7650.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -567, -3159]$ \(y^2+xy=x^3-x^2-567x-3159\) 2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.?
7650.z2 7650.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 1683, -23409]$ \(y^2+xy=x^3-x^2+1683x-23409\) 2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.?
7650.ba1 7650.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $4.345403229$ $[1, -1, 0, -110067, -14594059]$ \(y^2+xy=x^3-x^2-110067x-14594059\) 408.2.0.?
7650.bb1 7650.bb \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3694317, -2732121659]$ \(y^2+xy=x^3-x^2-3694317x-2732121659\) 2.3.0.a.1, 24.6.0.a.1, 40.6.0.e.1, 60.6.0.c.1, 120.12.0.?
7650.bb2 7650.bb \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -226317, -44421659]$ \(y^2+xy=x^3-x^2-226317x-44421659\) 2.3.0.a.1, 24.6.0.d.1, 30.6.0.a.1, 40.6.0.e.1, 120.12.0.?
7650.bc1 7650.bc \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.368732142$ $[1, -1, 0, -1692, -22784]$ \(y^2+xy=x^3-x^2-1692x-22784\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 120.12.0.?, $\ldots$
7650.bc2 7650.bc \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.184366071$ $[1, -1, 0, 2808, -126284]$ \(y^2+xy=x^3-x^2+2808x-126284\) 2.3.0.a.1, 4.6.0.a.1, 60.12.0-4.a.1.1, 68.12.0.d.1, 408.24.0.?, $\ldots$
Next   displayed columns for results