Learn more

Refine search


Results (1-50 of 129 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
7650.a1 7650.a 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 1.2988131821.298813182 [1,1,0,63492,6173666][1, -1, 0, -63492, 6173666] y2+xy=x3x263492x+6173666y^2+xy=x^3-x^2-63492x+6173666 408.2.0.?
7650.b1 7650.b 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 0.4027141890.402714189 [1,1,0,387,2781][1, -1, 0, -387, 2781] y2+xy=x3x2387x+2781y^2+xy=x^3-x^2-387x+2781 408.2.0.?
7650.c1 7650.c 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 9.4765949659.476594965 [1,1,0,79155117,328719189541][1, -1, 0, -79155117, 328719189541] y2+xy=x3x279155117x+328719189541y^2+xy=x^3-x^2-79155117x+328719189541 408.2.0.?
7650.d1 7650.d 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 0.3393239970.339323997 [1,1,0,27,211][1, -1, 0, -27, 211] y2+xy=x3x227x+211y^2+xy=x^3-x^2-27x+211 408.2.0.?
7650.e1 7650.e 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,65277,6403019][1, -1, 0, -65277, -6403019] y2+xy=x3x265277x6403019y^2+xy=x^3-x^2-65277x-6403019 2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.?
7650.e2 7650.e 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,4077,99419][1, -1, 0, -4077, -99419] y2+xy=x3x24077x99419y^2+xy=x^3-x^2-4077x-99419 2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.?
7650.f1 7650.f 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 1.6633060721.663306072 [1,1,0,17442,677484][1, -1, 0, -17442, -677484] y2+xy=x3x217442x677484y^2+xy=x^3-x^2-17442x-677484 408.2.0.?
7650.g1 7650.g 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 7.4822242897.482224289 [1,1,0,937917,69004741][1, -1, 0, -937917, 69004741] y2+xy=x3x2937917x+69004741y^2+xy=x^3-x^2-937917x+69004741 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, \ldots
7650.g2 7650.g 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 2.4940747632.494074763 [1,1,0,574542,167475884][1, -1, 0, -574542, -167475884] y2+xy=x3x2574542x167475884y^2+xy=x^3-x^2-574542x-167475884 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, \ldots
7650.g3 7650.g 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 1.2470373811.247037381 [1,1,0,556542,178473884][1, -1, 0, -556542, -178473884] y2+xy=x3x2556542x178473884y^2+xy=x^3-x^2-556542x-178473884 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, \ldots
7650.g4 7650.g 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 3.7411121443.741112144 [1,1,0,3670083,543628741][1, -1, 0, 3670083, 543628741] y2+xy=x3x2+3670083x+543628741y^2+xy=x^3-x^2+3670083x+543628741 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, \ldots
7650.h1 7650.h 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,305742,67768916][1, -1, 0, -305742, 67768916] y2+xy=x3x2305742x+67768916y^2+xy=x^3-x^2-305742x+67768916 408.2.0.?
7650.i1 7650.i 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,567,21659][1, -1, 0, -567, -21659] y2+xy=x3x2567x21659y^2+xy=x^3-x^2-567x-21659 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 680.2.0.?, 2040.16.0.?
7650.i2 7650.i 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,5058,557716][1, -1, 0, 5058, 557716] y2+xy=x3x2+5058x+557716y^2+xy=x^3-x^2+5058x+557716 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 680.2.0.?, 2040.16.0.?
7650.j1 7650.j 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,168867,20235541][1, -1, 0, -168867, 20235541] y2+xy=x3x2168867x+20235541y^2+xy=x^3-x^2-168867x+20235541 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.2, \ldots
7650.j2 7650.j 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,57492,5289584][1, -1, 0, -57492, -5289584] y2+xy=x3x257492x5289584y^2+xy=x^3-x^2-57492x-5289584 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.1, \ldots
7650.j3 7650.j 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,48492,7008584][1, -1, 0, -48492, -7008584] y2+xy=x3x248492x7008584y^2+xy=x^3-x^2-48492x-7008584 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.1, \ldots
7650.j4 7650.j 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,407133,127947541][1, -1, 0, 407133, 127947541] y2+xy=x3x2+407133x+127947541y^2+xy=x^3-x^2+407133x+127947541 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.2, \ldots
7650.k1 7650.k 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 8.7302344228.730234422 [1,1,0,10393542,12893479884][1, -1, 0, -10393542, -12893479884] y2+xy=x3x210393542x12893479884y^2+xy=x^3-x^2-10393542x-12893479884 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
7650.k2 7650.k 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 4.3651172114.365117211 [1,1,0,601542,232423884][1, -1, 0, -601542, -232423884] y2+xy=x3x2601542x232423884y^2+xy=x^3-x^2-601542x-232423884 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
7650.l1 7650.l 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 0.5317544380.531754438 [1,1,0,2292,42866][1, -1, 0, -2292, 42866] y2+xy=x3x22292x+42866y^2+xy=x^3-x^2-2292x+42866 680.2.0.?
7650.m1 7650.m 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 8.9538099858.953809985 [1,1,0,30957,2088739][1, -1, 0, -30957, -2088739] y2+xy=x3x230957x2088739y^2+xy=x^3-x^2-30957x-2088739 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.?
7650.m2 7650.m 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 2.9846033282.984603328 [1,1,0,357,3179][1, -1, 0, -357, -3179] y2+xy=x3x2357x3179y^2+xy=x^3-x^2-357x-3179 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.?
7650.n1 7650.n 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 2.9103762072.910376207 [1,1,0,6792,213184][1, -1, 0, -6792, -213184] y2+xy=x3x26792x213184y^2+xy=x^3-x^2-6792x-213184 3.8.0-3.a.1.1, 408.16.0.?
7650.n2 7650.n 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/3Z\Z/3\Z 0.9701254020.970125402 [1,1,0,417,3141][1, -1, 0, -417, 3141] y2+xy=x3x2417x+3141y^2+xy=x^3-x^2-417x+3141 3.8.0-3.a.1.2, 408.16.0.?
7650.o1 7650.o 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,4617,102541][1, -1, 0, -4617, 102541] y2+xy=x3x24617x+102541y^2+xy=x^3-x^2-4617x+102541 408.2.0.?
7650.p1 7650.p 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,5508,286416][1, -1, 0, 5508, 286416] y2+xy=x3x2+5508x+286416y^2+xy=x^3-x^2+5508x+286416 408.2.0.?
7650.q1 7650.q 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 1.0647159431.064715943 [1,1,0,29742,1925084][1, -1, 0, -29742, -1925084] y2+xy=x3x229742x1925084y^2+xy=x^3-x^2-29742x-1925084 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.k.2, 60.12.0.bk.1, \ldots
7650.q2 7650.q 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 2.1294318872.129431887 [1,1,0,258,95084][1, -1, 0, 258, -95084] y2+xy=x3x2+258x95084y^2+xy=x^3-x^2+258x-95084 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 16.24.0.n.1, 30.6.0.a.1, \ldots
7650.r1 7650.r 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.4896731880.489673188 [1,1,0,10707,420101][1, -1, 0, -10707, 420101] y2+xy=x3x210707x+420101y^2+xy=x^3-x^2-10707x+420101 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.k.2, 60.12.0.bk.1, \ldots
7650.r2 7650.r 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.9793463770.979346377 [1,1,0,93,20501][1, -1, 0, 93, 20501] y2+xy=x3x2+93x+20501y^2+xy=x^3-x^2+93x+20501 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 16.24.0.n.1, 30.6.0.a.1, \ldots
7650.s1 7650.s 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,162,1004][1, -1, 0, -162, -1004] y2+xy=x3x2162x1004y^2+xy=x^3-x^2-162x-1004 680.2.0.?
7650.t1 7650.t 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 19.8990637319.89906373 [1,1,0,524155977,4618652600461][1, -1, 0, -524155977, 4618652600461] y2+xy=x3x2524155977x+4618652600461y^2+xy=x^3-x^2-524155977x+4618652600461 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.?
7650.t2 7650.t 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 6.6330212446.633021244 [1,1,0,13874202,10555067084][1, -1, 0, -13874202, -10555067084] y2+xy=x3x213874202x10555067084y^2+xy=x^3-x^2-13874202x-10555067084 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.?
7650.u1 7650.u 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,93867,10225459][1, -1, 0, -93867, -10225459] y2+xy=x3x293867x10225459y^2+xy=x^3-x^2-93867x-10225459 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.?
7650.u2 7650.u 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,18867,999541][1, -1, 0, -18867, 999541] y2+xy=x3x218867x+999541y^2+xy=x^3-x^2-18867x+999541 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.?
7650.v1 7650.v 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,5967,106861][1, -1, 0, -5967, 106861] y2+xy=x3x25967x+106861y^2+xy=x^3-x^2-5967x+106861 3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.?
7650.v2 7650.v 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,2592,50144][1, -1, 0, -2592, -50144] y2+xy=x3x22592x50144y^2+xy=x^3-x^2-2592x-50144 3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.?
7650.w1 7650.w 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 4.0009727674.000972767 [1,1,0,1758,61084][1, -1, 0, 1758, -61084] y2+xy=x3x2+1758x61084y^2+xy=x^3-x^2+1758x-61084 68.2.0.a.1
7650.x1 7650.x 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/3Z\Z/3\Z 11 [1,1,0,85992,9727416][1, -1, 0, -85992, 9727416] y2+xy=x3x285992x+9727416y^2+xy=x^3-x^2-85992x+9727416 3.8.0-3.a.1.2, 408.16.0.?
7650.x2 7650.x 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,80367,11050541][1, -1, 0, -80367, 11050541] y2+xy=x3x280367x+11050541y^2+xy=x^3-x^2-80367x+11050541 3.8.0-3.a.1.1, 408.16.0.?
7650.y1 7650.y 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 1.9288887061.928888706 [1,1,0,2610567,1624145341][1, -1, 0, -2610567, 1624145341] y2+xy=x3x22610567x+1624145341y^2+xy=x^3-x^2-2610567x+1624145341 2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.?
7650.y2 7650.y 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 0.9644443530.964444353 [1,1,0,162567,25601341][1, -1, 0, -162567, 25601341] y2+xy=x3x2162567x+25601341y^2+xy=x^3-x^2-162567x+25601341 2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.?
7650.z1 7650.z 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,567,3159][1, -1, 0, -567, -3159] y2+xy=x3x2567x3159y^2+xy=x^3-x^2-567x-3159 2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.?
7650.z2 7650.z 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,1683,23409][1, -1, 0, 1683, -23409] y2+xy=x3x2+1683x23409y^2+xy=x^3-x^2+1683x-23409 2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.?
7650.ba1 7650.ba 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 trivial\mathsf{trivial} 4.3454032294.345403229 [1,1,0,110067,14594059][1, -1, 0, -110067, -14594059] y2+xy=x3x2110067x14594059y^2+xy=x^3-x^2-110067x-14594059 408.2.0.?
7650.bb1 7650.bb 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,3694317,2732121659][1, -1, 0, -3694317, -2732121659] y2+xy=x3x23694317x2732121659y^2+xy=x^3-x^2-3694317x-2732121659 2.3.0.a.1, 24.6.0.a.1, 40.6.0.e.1, 60.6.0.c.1, 120.12.0.?
7650.bb2 7650.bb 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,226317,44421659][1, -1, 0, -226317, -44421659] y2+xy=x3x2226317x44421659y^2+xy=x^3-x^2-226317x-44421659 2.3.0.a.1, 24.6.0.d.1, 30.6.0.a.1, 40.6.0.e.1, 120.12.0.?
7650.bc1 7650.bc 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 2.3687321422.368732142 [1,1,0,1692,22784][1, -1, 0, -1692, -22784] y2+xy=x3x21692x22784y^2+xy=x^3-x^2-1692x-22784 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 120.12.0.?, \ldots
7650.bc2 7650.bc 2325217 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 11 Z/2Z\Z/2\Z 1.1843660711.184366071 [1,1,0,2808,126284][1, -1, 0, 2808, -126284] y2+xy=x3x2+2808x126284y^2+xy=x^3-x^2+2808x-126284 2.3.0.a.1, 4.6.0.a.1, 60.12.0-4.a.1.1, 68.12.0.d.1, 408.24.0.?, \ldots
Next   displayed columns for results