Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
7650.a1 |
7650l1 |
7650.a |
7650l |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2 \cdot 3^{9} \cdot 5^{8} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1.298813182$ |
$1$ |
|
$4$ |
$40320$ |
$1.354637$ |
$3681571635/34$ |
$0.92689$ |
$5.00865$ |
$[1, -1, 0, -63492, 6173666]$ |
\(y^2+xy=x^3-x^2-63492x+6173666\) |
408.2.0.? |
$[(145, -59)]$ |
7650.b1 |
7650bb1 |
7650.b |
7650bb |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{3} \cdot 3^{11} \cdot 5^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$0.402714189$ |
$1$ |
|
$4$ |
$5760$ |
$0.423008$ |
$352224985/33048$ |
$0.89416$ |
$3.29779$ |
$[1, -1, 0, -387, 2781]$ |
\(y^2+xy=x^3-x^2-387x+2781\) |
408.2.0.? |
$[(3, 39)]$ |
7650.c1 |
7650be1 |
7650.c |
7650be |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{15} \cdot 3^{29} \cdot 5^{8} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$9.476594965$ |
$1$ |
|
$0$ |
$2318400$ |
$3.546562$ |
$-192607474931043120625/52443022624653312$ |
$1.09001$ |
$7.44314$ |
$[1, -1, 0, -79155117, 328719189541]$ |
\(y^2+xy=x^3-x^2-79155117x+328719189541\) |
408.2.0.? |
$[(-5333065/43, 58161569843/43)]$ |
7650.d1 |
7650z1 |
7650.d |
7650z |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2 \cdot 3^{9} \cdot 5^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$0.339323997$ |
$1$ |
|
$6$ |
$2880$ |
$0.069068$ |
$-121945/918$ |
$0.85539$ |
$2.70189$ |
$[1, -1, 0, -27, 211]$ |
\(y^2+xy=x^3-x^2-27x+211\) |
408.2.0.? |
$[(5, 11)]$ |
7650.e1 |
7650bh2 |
7650.e |
7650bh |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{3} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20480$ |
$1.198195$ |
$337575153545189/2448$ |
$1.21783$ |
$5.01795$ |
$[1, -1, 0, -65277, -6403019]$ |
\(y^2+xy=x^3-x^2-65277x-6403019\) |
2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
$[]$ |
7650.e2 |
7650bh1 |
7650.e |
7650bh |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{3} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$10240$ |
$0.851620$ |
$-82256120549/221952$ |
$0.95304$ |
$4.08811$ |
$[1, -1, 0, -4077, -99419]$ |
\(y^2+xy=x^3-x^2-4077x-99419\) |
2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
$[]$ |
7650.f1 |
7650bd1 |
7650.f |
7650bd |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{13} \cdot 3^{13} \cdot 5^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1.663306072$ |
$1$ |
|
$4$ |
$34944$ |
$1.425217$ |
$1288009359025/304570368$ |
$1.16064$ |
$4.57520$ |
$[1, -1, 0, -17442, -677484]$ |
\(y^2+xy=x^3-x^2-17442x-677484\) |
408.2.0.? |
$[(-45, 144)]$ |
7650.g1 |
7650y3 |
7650.g |
7650y |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{24} \cdot 3^{6} \cdot 5^{12} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$9$ |
$7.482224289$ |
$1$ |
|
$1$ |
$276480$ |
$2.471500$ |
$8010684753304969/4456448000000$ |
$1.04256$ |
$5.91200$ |
$[1, -1, 0, -937917, 69004741]$ |
\(y^2+xy=x^3-x^2-937917x+69004741\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(-2953/2, 154459/2)]$ |
7650.g2 |
7650y1 |
7650.g |
7650y |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{8} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$9$ |
$2.494074763$ |
$1$ |
|
$3$ |
$92160$ |
$1.922195$ |
$1841373668746009/31443200$ |
$0.98941$ |
$5.74759$ |
$[1, -1, 0, -574542, -167475884]$ |
\(y^2+xy=x^3-x^2-574542x-167475884\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(1164, 26618)]$ |
7650.g3 |
7650y2 |
7650.g |
7650y |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{10} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$9$ |
$1.247037381$ |
$1$ |
|
$4$ |
$184320$ |
$2.268768$ |
$-1673672305534489/241375690000$ |
$0.99210$ |
$5.76179$ |
$[1, -1, 0, -556542, -178473884]$ |
\(y^2+xy=x^3-x^2-556542x-178473884\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[(1404, 41798)]$ |
7650.g4 |
7650y4 |
7650.g |
7650y |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{18} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$2040$ |
$384$ |
$9$ |
$3.741112144$ |
$1$ |
|
$2$ |
$552960$ |
$2.818073$ |
$479958568556831351/289000000000000$ |
$1.05690$ |
$6.36970$ |
$[1, -1, 0, 3670083, 543628741]$ |
\(y^2+xy=x^3-x^2+3670083x+543628741\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[(3914, 271643)]$ |
7650.h1 |
7650d1 |
7650.h |
7650d |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{25} \cdot 3^{3} \cdot 5^{10} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$84000$ |
$2.058598$ |
$-11987427957075/570425344$ |
$1.10900$ |
$5.54480$ |
$[1, -1, 0, -305742, 67768916]$ |
\(y^2+xy=x^3-x^2-305742x+67768916\) |
408.2.0.? |
$[]$ |
7650.i1 |
7650q1 |
7650.i |
7650q |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{9} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8640$ |
$0.848124$ |
$-1771561/17000$ |
$0.99970$ |
$3.74646$ |
$[1, -1, 0, -567, -21659]$ |
\(y^2+xy=x^3-x^2-567x-21659\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 680.2.0.?, 2040.16.0.? |
$[]$ |
7650.i2 |
7650q2 |
7650.i |
7650q |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{7} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25920$ |
$1.397430$ |
$1256216039/12577280$ |
$0.94869$ |
$4.47202$ |
$[1, -1, 0, 5058, 557716]$ |
\(y^2+xy=x^3-x^2+5058x+557716\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 680.2.0.?, 2040.16.0.? |
$[]$ |
7650.j1 |
7650p3 |
7650.j |
7650p |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{18} \cdot 3^{8} \cdot 5^{6} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$82944$ |
$1.995451$ |
$46753267515625/11591221248$ |
$1.08666$ |
$5.33681$ |
$[1, -1, 0, -168867, 20235541]$ |
\(y^2+xy=x^3-x^2-168867x+20235541\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.2, $\ldots$ |
$[]$ |
7650.j2 |
7650p1 |
7650.j |
7650p |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{6} \cdot 3^{12} \cdot 5^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.4, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$27648$ |
$1.446146$ |
$1845026709625/793152$ |
$1.00293$ |
$4.97534$ |
$[1, -1, 0, -57492, -5289584]$ |
\(y^2+xy=x^3-x^2-57492x-5289584\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.1, $\ldots$ |
$[]$ |
7650.j3 |
7650p2 |
7650.j |
7650p |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{3} \cdot 3^{18} \cdot 5^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$55296$ |
$1.792719$ |
$-1107111813625/1228691592$ |
$1.01884$ |
$5.03797$ |
$[1, -1, 0, -48492, -7008584]$ |
\(y^2+xy=x^3-x^2-48492x-7008584\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.1, $\ldots$ |
$[]$ |
7650.j4 |
7650p4 |
7650.j |
7650p |
$4$ |
$6$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{6} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.5, 3.4.0.1 |
2B, 3B |
$2040$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$165888$ |
$2.342026$ |
$655215969476375/1001033261568$ |
$1.05358$ |
$5.68736$ |
$[1, -1, 0, 407133, 127947541]$ |
\(y^2+xy=x^3-x^2+407133x+127947541\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.2, $\ldots$ |
$[]$ |
7650.k1 |
7650x2 |
7650.k |
7650x |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{9} \cdot 3^{20} \cdot 5^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$8.730234422$ |
$1$ |
|
$0$ |
$387072$ |
$2.696625$ |
$10901014250685308569/1040774054400$ |
$1.02506$ |
$6.71892$ |
$[1, -1, 0, -10393542, -12893479884]$ |
\(y^2+xy=x^3-x^2-10393542x-12893479884\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[(821511/5, 738804501/5)]$ |
7650.k2 |
7650x1 |
7650.k |
7650x |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{18} \cdot 3^{13} \cdot 5^{7} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$4.365117211$ |
$1$ |
|
$3$ |
$193536$ |
$2.350052$ |
$-2113364608155289/828431400960$ |
$0.99736$ |
$5.82083$ |
$[1, -1, 0, -601542, -232423884]$ |
\(y^2+xy=x^3-x^2-601542x-232423884\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[(32799, 5921913)]$ |
7650.l1 |
7650w1 |
7650.l |
7650w |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2 \cdot 3^{6} \cdot 5^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$0.531754438$ |
$1$ |
|
$4$ |
$6720$ |
$0.684058$ |
$-116930169/170$ |
$0.88233$ |
$3.89467$ |
$[1, -1, 0, -2292, 42866]$ |
\(y^2+xy=x^3-x^2-2292x+42866\) |
680.2.0.? |
$[(29, -2)]$ |
7650.m1 |
7650a2 |
7650.m |
7650a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{3} \cdot 3^{9} \cdot 5^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$8.953809985$ |
$1$ |
|
$0$ |
$18144$ |
$1.032261$ |
$-6667713086715/136$ |
$0.99141$ |
$4.76767$ |
$[1, -1, 0, -30957, -2088739]$ |
\(y^2+xy=x^3-x^2-30957x-2088739\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.? |
$[(27943/11, 2166248/11)]$ |
7650.m2 |
7650a1 |
7650.m |
7650a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{9} \cdot 3^{3} \cdot 5^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$2.984603328$ |
$1$ |
|
$2$ |
$6048$ |
$0.482955$ |
$-7466356035/2515456$ |
$0.94625$ |
$3.32204$ |
$[1, -1, 0, -357, -3179]$ |
\(y^2+xy=x^3-x^2-357x-3179\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.? |
$[(23, 8)]$ |
7650.n1 |
7650j2 |
7650.n |
7650j |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{9} \cdot 3^{9} \cdot 5^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$408$ |
$16$ |
$0$ |
$2.910376207$ |
$1$ |
|
$0$ |
$10368$ |
$0.984344$ |
$2816964675/8704$ |
$0.94945$ |
$4.25880$ |
$[1, -1, 0, -6792, -213184]$ |
\(y^2+xy=x^3-x^2-6792x-213184\) |
3.8.0-3.a.1.1, 408.16.0.? |
$[(-185/2, 23/2)]$ |
7650.n2 |
7650j1 |
7650.n |
7650j |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{3} \cdot 3^{3} \cdot 5^{4} \cdot 17^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$408$ |
$16$ |
$0$ |
$0.970125402$ |
$1$ |
|
$8$ |
$3456$ |
$0.435039$ |
$475854075/39304$ |
$1.08874$ |
$3.32282$ |
$[1, -1, 0, -417, 3141]$ |
\(y^2+xy=x^3-x^2-417x+3141\) |
3.8.0-3.a.1.2, 408.16.0.? |
$[(9, 3)]$ |
7650.o1 |
7650bg1 |
7650.o |
7650bg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{7} \cdot 3^{7} \cdot 5^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13440$ |
$1.074785$ |
$38226865/6528$ |
$0.86981$ |
$4.12931$ |
$[1, -1, 0, -4617, 102541]$ |
\(y^2+xy=x^3-x^2-4617x+102541\) |
408.2.0.? |
$[]$ |
7650.p1 |
7650m1 |
7650.p |
7650m |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{7} \cdot 3^{7} \cdot 5^{10} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20160$ |
$1.306301$ |
$2595575/6528$ |
$0.89849$ |
$4.32355$ |
$[1, -1, 0, 5508, 286416]$ |
\(y^2+xy=x^3-x^2+5508x+286416\) |
408.2.0.? |
$[]$ |
7650.q1 |
7650i2 |
7650.q |
7650i |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{3} \cdot 5^{9} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.34 |
2B |
$4080$ |
$96$ |
$3$ |
$1.064715943$ |
$1$ |
|
$4$ |
$20480$ |
$1.441566$ |
$55175798943/1336336$ |
$1.07311$ |
$4.75424$ |
$[1, -1, 0, -29742, -1925084]$ |
\(y^2+xy=x^3-x^2-29742x-1925084\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.k.2, 60.12.0.bk.1, $\ldots$ |
$[(-100, 254)]$ |
7650.q2 |
7650i1 |
7650.q |
7650i |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{9} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.35 |
2B |
$4080$ |
$96$ |
$3$ |
$2.129431887$ |
$1$ |
|
$3$ |
$10240$ |
$1.094992$ |
$35937/73984$ |
$1.06635$ |
$4.07570$ |
$[1, -1, 0, 258, -95084]$ |
\(y^2+xy=x^3-x^2+258x-95084\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 16.24.0.n.1, 30.6.0.a.1, $\ldots$ |
$[(108, 1034)]$ |
7650.r1 |
7650h2 |
7650.r |
7650h |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{9} \cdot 5^{3} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.34 |
2B |
$4080$ |
$96$ |
$3$ |
$0.489673188$ |
$1$ |
|
$8$ |
$12288$ |
$1.186153$ |
$55175798943/1336336$ |
$1.07311$ |
$4.41149$ |
$[1, -1, 0, -10707, 420101]$ |
\(y^2+xy=x^3-x^2-10707x+420101\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.k.2, 60.12.0.bk.1, $\ldots$ |
$[(74, 133)]$ |
7650.r2 |
7650h1 |
7650.r |
7650h |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.35 |
2B |
$4080$ |
$96$ |
$3$ |
$0.979346377$ |
$1$ |
|
$7$ |
$6144$ |
$0.839580$ |
$35937/73984$ |
$1.06635$ |
$3.73296$ |
$[1, -1, 0, 93, 20501]$ |
\(y^2+xy=x^3-x^2+93x+20501\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 16.24.0.n.1, 30.6.0.a.1, $\ldots$ |
$[(-10, 141)]$ |
7650.s1 |
7650bf1 |
7650.s |
7650bf |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3360$ |
$0.300014$ |
$-5177717/2176$ |
$0.86118$ |
$3.06692$ |
$[1, -1, 0, -162, -1004]$ |
\(y^2+xy=x^3-x^2-162x-1004\) |
680.2.0.? |
$[]$ |
7650.t1 |
7650s2 |
7650.t |
7650s |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{51} \cdot 3^{13} \cdot 5^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$19.89906373$ |
$1$ |
|
$0$ |
$2056320$ |
$3.676884$ |
$873851835888094527083289145/83719665273003835392$ |
$1.08087$ |
$8.03420$ |
$[1, -1, 0, -524155977, 4618652600461]$ |
\(y^2+xy=x^3-x^2-524155977x+4618652600461\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.? |
$[(2377244555/458, 34607828116237/458)]$ |
7650.t2 |
7650s1 |
7650.t |
7650s |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{17} \cdot 3^{27} \cdot 5^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$6.633021244$ |
$1$ |
|
$0$ |
$685440$ |
$3.127579$ |
$16206164115169540524745/6736014906011025408$ |
$1.07254$ |
$6.81582$ |
$[1, -1, 0, -13874202, -10555067084]$ |
\(y^2+xy=x^3-x^2-13874202x-10555067084\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.? |
$[(-6925/2, 734593/2)]$ |
7650.u1 |
7650b2 |
7650.u |
7650b |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{3} \cdot 3^{9} \cdot 5^{10} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$51840$ |
$1.789064$ |
$475854075/39304$ |
$1.08874$ |
$5.13981$ |
$[1, -1, 0, -93867, -10225459]$ |
\(y^2+xy=x^3-x^2-93867x-10225459\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.? |
$[]$ |
7650.u2 |
7650b1 |
7650.u |
7650b |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{9} \cdot 3^{3} \cdot 5^{10} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$1.239758$ |
$2816964675/8704$ |
$0.94945$ |
$4.60155$ |
$[1, -1, 0, -18867, 999541]$ |
\(y^2+xy=x^3-x^2-18867x+999541\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.? |
$[]$ |
7650.v1 |
7650n2 |
7650.v |
7650n |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{15} \cdot 3^{7} \cdot 5^{2} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$1.183569$ |
$1289333385625/482967552$ |
$1.04029$ |
$4.21536$ |
$[1, -1, 0, -5967, 106861]$ |
\(y^2+xy=x^3-x^2-5967x+106861\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.? |
$[]$ |
7650.v2 |
7650n1 |
7650.v |
7650n |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{5} \cdot 3^{9} \cdot 5^{2} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2040$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$0.634263$ |
$105695235625/14688$ |
$1.21157$ |
$3.93565$ |
$[1, -1, 0, -2592, -50144]$ |
\(y^2+xy=x^3-x^2-2592x-50144\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.? |
$[]$ |
7650.w1 |
7650t1 |
7650.w |
7650t |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$4.000972767$ |
$1$ |
|
$2$ |
$13440$ |
$1.040831$ |
$84375/272$ |
$1.04213$ |
$3.97527$ |
$[1, -1, 0, 1758, -61084]$ |
\(y^2+xy=x^3-x^2+1758x-61084\) |
68.2.0.a.1 |
$[(80, 726)]$ |
7650.x1 |
7650g1 |
7650.x |
7650g |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{3} \cdot 3^{3} \cdot 5^{8} \cdot 17 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$408$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$30240$ |
$1.287674$ |
$-6667713086715/136$ |
$0.99141$ |
$5.11041$ |
$[1, -1, 0, -85992, 9727416]$ |
\(y^2+xy=x^3-x^2-85992x+9727416\) |
3.8.0-3.a.1.2, 408.16.0.? |
$[]$ |
7650.x2 |
7650g2 |
7650.x |
7650g |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{9} \cdot 3^{9} \cdot 5^{8} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$408$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$90720$ |
$1.836979$ |
$-7466356035/2515456$ |
$0.94625$ |
$5.13902$ |
$[1, -1, 0, -80367, 11050541]$ |
\(y^2+xy=x^3-x^2-80367x+11050541\) |
3.8.0-3.a.1.1, 408.16.0.? |
$[]$ |
7650.y1 |
7650v2 |
7650.y |
7650v |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{7} \cdot 3^{12} \cdot 5^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$1.928888706$ |
$1$ |
|
$4$ |
$129024$ |
$2.192703$ |
$172735174415217961/39657600$ |
$1.00968$ |
$6.25542$ |
$[1, -1, 0, -2610567, 1624145341]$ |
\(y^2+xy=x^3-x^2-2610567x+1624145341\) |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
$[(939, -157)]$ |
7650.y2 |
7650v1 |
7650.y |
7650v |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{14} \cdot 3^{9} \cdot 5^{7} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2040$ |
$12$ |
$0$ |
$0.964444353$ |
$1$ |
|
$7$ |
$64512$ |
$1.846130$ |
$-41713327443241/639221760$ |
$0.96929$ |
$5.32698$ |
$[1, -1, 0, -162567, 25601341]$ |
\(y^2+xy=x^3-x^2-162567x+25601341\) |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
$[(174, 1513)]$ |
7650.z1 |
7650o1 |
7650.z |
7650o |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{2} \cdot 3^{8} \cdot 5^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.4 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$5120$ |
$0.590497$ |
$1771561/612$ |
$1.28490$ |
$3.42587$ |
$[1, -1, 0, -567, -3159]$ |
\(y^2+xy=x^3-x^2-567x-3159\) |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
$[]$ |
7650.z2 |
7650o2 |
7650.z |
7650o |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2 \cdot 3^{10} \cdot 5^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.5 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10240$ |
$0.937071$ |
$46268279/46818$ |
$0.94894$ |
$3.79071$ |
$[1, -1, 0, 1683, -23409]$ |
\(y^2+xy=x^3-x^2+1683x-23409\) |
2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? |
$[]$ |
7650.ba1 |
7650k1 |
7650.ba |
7650k |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{25} \cdot 3^{9} \cdot 5^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$408$ |
$2$ |
$0$ |
$4.345403229$ |
$1$ |
|
$2$ |
$50400$ |
$1.803186$ |
$-11987427957075/570425344$ |
$1.10900$ |
$5.20205$ |
$[1, -1, 0, -110067, -14594059]$ |
\(y^2+xy=x^3-x^2-110067x-14594059\) |
408.2.0.? |
$[(979, 28063)]$ |
7650.bb1 |
7650c2 |
7650.bb |
7650c |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{5} \cdot 3^{3} \cdot 5^{16} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$120$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$153600$ |
$2.362469$ |
$13217291350697580147/90312500000$ |
$1.07245$ |
$6.37191$ |
$[1, -1, 0, -3694317, -2732121659]$ |
\(y^2+xy=x^3-x^2-3694317x-2732121659\) |
2.3.0.a.1, 24.6.0.a.1, 40.6.0.e.1, 60.6.0.c.1, 120.12.0.? |
$[]$ |
7650.bb2 |
7650c1 |
7650.bb |
7650c |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{11} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$120$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$76800$ |
$2.015896$ |
$-3038732943445107/267267200000$ |
$1.01018$ |
$5.45087$ |
$[1, -1, 0, -226317, -44421659]$ |
\(y^2+xy=x^3-x^2-226317x-44421659\) |
2.3.0.a.1, 24.6.0.d.1, 30.6.0.a.1, 40.6.0.e.1, 120.12.0.? |
$[]$ |
7650.bc1 |
7650u1 |
7650.bc |
7650u |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$2040$ |
$48$ |
$0$ |
$2.368732142$ |
$1$ |
|
$5$ |
$9216$ |
$0.814734$ |
$47045881/6800$ |
$0.98870$ |
$3.79257$ |
$[1, -1, 0, -1692, -22784]$ |
\(y^2+xy=x^3-x^2-1692x-22784\) |
2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 120.12.0.?, $\ldots$ |
$[(-25, 71)]$ |
7650.bc2 |
7650u2 |
7650.bc |
7650u |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 17 \) |
\( - 2^{2} \cdot 3^{6} \cdot 5^{10} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$2040$ |
$48$ |
$0$ |
$1.184366071$ |
$1$ |
|
$6$ |
$18432$ |
$1.161308$ |
$214921799/722500$ |
$0.91035$ |
$4.13808$ |
$[1, -1, 0, 2808, -126284]$ |
\(y^2+xy=x^3-x^2+2808x-126284\) |
2.3.0.a.1, 4.6.0.a.1, 60.12.0-4.a.1.1, 68.12.0.d.1, 408.24.0.?, $\ldots$ |
$[(54, 398)]$ |