7650.a1 |
7650l1 |
7650.a |
7650l |
1 |
1 |
2⋅32⋅52⋅17 |
2⋅39⋅58⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
408 |
2 |
0 |
1.298813182 |
1 |
|
4 |
40320 |
1.354637 |
3681571635/34 |
0.92689 |
5.00865 |
[1,−1,0,−63492,6173666] |
y2+xy=x3−x2−63492x+6173666 |
408.2.0.? |
[(145,−59)] |
7650.b1 |
7650bb1 |
7650.b |
7650bb |
1 |
1 |
2⋅32⋅52⋅17 |
23⋅311⋅52⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
408 |
2 |
0 |
0.402714189 |
1 |
|
4 |
5760 |
0.423008 |
352224985/33048 |
0.89416 |
3.29779 |
[1,−1,0,−387,2781] |
y2+xy=x3−x2−387x+2781 |
408.2.0.? |
[(3,39)] |
7650.c1 |
7650be1 |
7650.c |
7650be |
1 |
1 |
2⋅32⋅52⋅17 |
−215⋅329⋅58⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
408 |
2 |
0 |
9.476594965 |
1 |
|
0 |
2318400 |
3.546562 |
−192607474931043120625/52443022624653312 |
1.09001 |
7.44314 |
[1,−1,0,−79155117,328719189541] |
y2+xy=x3−x2−79155117x+328719189541 |
408.2.0.? |
[(−5333065/43,58161569843/43)] |
7650.d1 |
7650z1 |
7650.d |
7650z |
1 |
1 |
2⋅32⋅52⋅17 |
−2⋅39⋅52⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
408 |
2 |
0 |
0.339323997 |
1 |
|
6 |
2880 |
0.069068 |
−121945/918 |
0.85539 |
2.70189 |
[1,−1,0,−27,211] |
y2+xy=x3−x2−27x+211 |
408.2.0.? |
[(5,11)] |
7650.e1 |
7650bh2 |
7650.e |
7650bh |
2 |
2 |
2⋅32⋅52⋅17 |
24⋅38⋅53⋅17 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
2.3.0.1 |
2B |
1020 |
12 |
0 |
1 |
1 |
|
0 |
20480 |
1.198195 |
337575153545189/2448 |
1.21783 |
5.01795 |
[1,−1,0,−65277,−6403019] |
y2+xy=x3−x2−65277x−6403019 |
2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
[] |
7650.e2 |
7650bh1 |
7650.e |
7650bh |
2 |
2 |
2⋅32⋅52⋅17 |
−28⋅37⋅53⋅172 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
2.3.0.1 |
2B |
1020 |
12 |
0 |
1 |
1 |
|
1 |
10240 |
0.851620 |
−82256120549/221952 |
0.95304 |
4.08811 |
[1,−1,0,−4077,−99419] |
y2+xy=x3−x2−4077x−99419 |
2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
[] |
7650.f1 |
7650bd1 |
7650.f |
7650bd |
1 |
1 |
2⋅32⋅52⋅17 |
213⋅313⋅54⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
408 |
2 |
0 |
1.663306072 |
1 |
|
4 |
34944 |
1.425217 |
1288009359025/304570368 |
1.16064 |
4.57520 |
[1,−1,0,−17442,−677484] |
y2+xy=x3−x2−17442x−677484 |
408.2.0.? |
[(−45,144)] |
7650.g1 |
7650y3 |
7650.g |
7650y |
4 |
6 |
2⋅32⋅52⋅17 |
224⋅36⋅512⋅17 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2,3 |
4.6.0.3, 3.4.0.1 |
2B, 3B |
2040 |
384 |
9 |
7.482224289 |
1 |
|
1 |
276480 |
2.471500 |
8010684753304969/4456448000000 |
1.04256 |
5.91200 |
[1,−1,0,−937917,69004741] |
y2+xy=x3−x2−937917x+69004741 |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, … |
[(−2953/2,154459/2)] |
7650.g2 |
7650y1 |
7650.g |
7650y |
4 |
6 |
2⋅32⋅52⋅17 |
28⋅36⋅58⋅173 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2,3 |
4.6.0.3, 3.4.0.1 |
2B, 3B |
2040 |
384 |
9 |
2.494074763 |
1 |
|
3 |
92160 |
1.922195 |
1841373668746009/31443200 |
0.98941 |
5.74759 |
[1,−1,0,−574542,−167475884] |
y2+xy=x3−x2−574542x−167475884 |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, … |
[(1164,26618)] |
7650.g3 |
7650y2 |
7650.g |
7650y |
4 |
6 |
2⋅32⋅52⋅17 |
−24⋅36⋅510⋅176 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2,3 |
4.6.0.5, 3.4.0.1 |
2B, 3B |
2040 |
384 |
9 |
1.247037381 |
1 |
|
4 |
184320 |
2.268768 |
−1673672305534489/241375690000 |
0.99210 |
5.76179 |
[1,−1,0,−556542,−178473884] |
y2+xy=x3−x2−556542x−178473884 |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, … |
[(1404,41798)] |
7650.g4 |
7650y4 |
7650.g |
7650y |
4 |
6 |
2⋅32⋅52⋅17 |
−212⋅36⋅518⋅172 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2,3 |
4.6.0.5, 3.4.0.1 |
2B, 3B |
2040 |
384 |
9 |
3.741112144 |
1 |
|
2 |
552960 |
2.818073 |
479958568556831351/289000000000000 |
1.05690 |
6.36970 |
[1,−1,0,3670083,543628741] |
y2+xy=x3−x2+3670083x+543628741 |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, … |
[(3914,271643)] |
7650.h1 |
7650d1 |
7650.h |
7650d |
1 |
1 |
2⋅32⋅52⋅17 |
−225⋅33⋅510⋅17 |
0 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
408 |
2 |
0 |
1 |
1 |
|
0 |
84000 |
2.058598 |
−11987427957075/570425344 |
1.10900 |
5.54480 |
[1,−1,0,−305742,67768916] |
y2+xy=x3−x2−305742x+67768916 |
408.2.0.? |
[] |
7650.i1 |
7650q1 |
7650.i |
7650q |
2 |
3 |
2⋅32⋅52⋅17 |
−23⋅36⋅59⋅17 |
0 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
1 |
1 |
|
0 |
8640 |
0.848124 |
−1771561/17000 |
0.99970 |
3.74646 |
[1,−1,0,−567,−21659] |
y2+xy=x3−x2−567x−21659 |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 680.2.0.?, 2040.16.0.? |
[] |
7650.i2 |
7650q2 |
7650.i |
7650q |
2 |
3 |
2⋅32⋅52⋅17 |
−29⋅36⋅57⋅173 |
0 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
1 |
1 |
|
0 |
25920 |
1.397430 |
1256216039/12577280 |
0.94869 |
4.47202 |
[1,−1,0,5058,557716] |
y2+xy=x3−x2+5058x+557716 |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 680.2.0.?, 2040.16.0.? |
[] |
7650.j1 |
7650p3 |
7650.j |
7650p |
4 |
6 |
2⋅32⋅52⋅17 |
218⋅38⋅56⋅173 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2,3 |
8.6.0.4, 3.4.0.1 |
2B, 3B |
2040 |
96 |
1 |
1 |
1 |
|
1 |
82944 |
1.995451 |
46753267515625/11591221248 |
1.08666 |
5.33681 |
[1,−1,0,−168867,20235541] |
y2+xy=x3−x2−168867x+20235541 |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.2, … |
[] |
7650.j2 |
7650p1 |
7650.j |
7650p |
4 |
6 |
2⋅32⋅52⋅17 |
26⋅312⋅56⋅17 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2,3 |
8.6.0.4, 3.4.0.1 |
2B, 3B |
2040 |
96 |
1 |
1 |
1 |
|
1 |
27648 |
1.446146 |
1845026709625/793152 |
1.00293 |
4.97534 |
[1,−1,0,−57492,−5289584] |
y2+xy=x3−x2−57492x−5289584 |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 15.8.0-3.a.1.1, … |
[] |
7650.j3 |
7650p2 |
7650.j |
7650p |
4 |
6 |
2⋅32⋅52⋅17 |
−23⋅318⋅56⋅172 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2,3 |
8.6.0.5, 3.4.0.1 |
2B, 3B |
2040 |
96 |
1 |
1 |
1 |
|
0 |
55296 |
1.792719 |
−1107111813625/1228691592 |
1.01884 |
5.03797 |
[1,−1,0,−48492,−7008584] |
y2+xy=x3−x2−48492x−7008584 |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.1, … |
[] |
7650.j4 |
7650p4 |
7650.j |
7650p |
4 |
6 |
2⋅32⋅52⋅17 |
−29⋅310⋅56⋅176 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2,3 |
8.6.0.5, 3.4.0.1 |
2B, 3B |
2040 |
96 |
1 |
1 |
1 |
|
0 |
165888 |
2.342026 |
655215969476375/1001033261568 |
1.05358 |
5.68736 |
[1,−1,0,407133,127947541] |
y2+xy=x3−x2+407133x+127947541 |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 15.8.0-3.a.1.2, … |
[] |
7650.k1 |
7650x2 |
7650.k |
7650x |
2 |
2 |
2⋅32⋅52⋅17 |
29⋅320⋅58⋅17 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
2.3.0.1 |
2B |
2040 |
12 |
0 |
8.730234422 |
1 |
|
0 |
387072 |
2.696625 |
10901014250685308569/1040774054400 |
1.02506 |
6.71892 |
[1,−1,0,−10393542,−12893479884] |
y2+xy=x3−x2−10393542x−12893479884 |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
[(821511/5,738804501/5)] |
7650.k2 |
7650x1 |
7650.k |
7650x |
2 |
2 |
2⋅32⋅52⋅17 |
−218⋅313⋅57⋅172 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
2.3.0.1 |
2B |
2040 |
12 |
0 |
4.365117211 |
1 |
|
3 |
193536 |
2.350052 |
−2113364608155289/828431400960 |
0.99736 |
5.82083 |
[1,−1,0,−601542,−232423884] |
y2+xy=x3−x2−601542x−232423884 |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
[(32799,5921913)] |
7650.l1 |
7650w1 |
7650.l |
7650w |
1 |
1 |
2⋅32⋅52⋅17 |
−2⋅36⋅57⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
680 |
2 |
0 |
0.531754438 |
1 |
|
4 |
6720 |
0.684058 |
−116930169/170 |
0.88233 |
3.89467 |
[1,−1,0,−2292,42866] |
y2+xy=x3−x2−2292x+42866 |
680.2.0.? |
[(29,−2)] |
7650.m1 |
7650a2 |
7650.m |
7650a |
2 |
3 |
2⋅32⋅52⋅17 |
−23⋅39⋅52⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
8.953809985 |
1 |
|
0 |
18144 |
1.032261 |
−6667713086715/136 |
0.99141 |
4.76767 |
[1,−1,0,−30957,−2088739] |
y2+xy=x3−x2−30957x−2088739 |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.? |
[(27943/11,2166248/11)] |
7650.m2 |
7650a1 |
7650.m |
7650a |
2 |
3 |
2⋅32⋅52⋅17 |
−29⋅33⋅52⋅173 |
1 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
2.984603328 |
1 |
|
2 |
6048 |
0.482955 |
−7466356035/2515456 |
0.94625 |
3.32204 |
[1,−1,0,−357,−3179] |
y2+xy=x3−x2−357x−3179 |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.? |
[(23,8)] |
7650.n1 |
7650j2 |
7650.n |
7650j |
2 |
3 |
2⋅32⋅52⋅17 |
29⋅39⋅54⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.8.0.2 |
3B.1.2 |
408 |
16 |
0 |
2.910376207 |
1 |
|
0 |
10368 |
0.984344 |
2816964675/8704 |
0.94945 |
4.25880 |
[1,−1,0,−6792,−213184] |
y2+xy=x3−x2−6792x−213184 |
3.8.0-3.a.1.1, 408.16.0.? |
[(−185/2,23/2)] |
7650.n2 |
7650j1 |
7650.n |
7650j |
2 |
3 |
2⋅32⋅52⋅17 |
23⋅33⋅54⋅173 |
1 |
Z/3Z |
Q |
|
SU(2) |
|
|
3 |
3.8.0.1 |
3B.1.1 |
408 |
16 |
0 |
0.970125402 |
1 |
|
8 |
3456 |
0.435039 |
475854075/39304 |
1.08874 |
3.32282 |
[1,−1,0,−417,3141] |
y2+xy=x3−x2−417x+3141 |
3.8.0-3.a.1.2, 408.16.0.? |
[(9,3)] |
7650.o1 |
7650bg1 |
7650.o |
7650bg |
1 |
1 |
2⋅32⋅52⋅17 |
27⋅37⋅58⋅17 |
0 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
408 |
2 |
0 |
1 |
1 |
|
0 |
13440 |
1.074785 |
38226865/6528 |
0.86981 |
4.12931 |
[1,−1,0,−4617,102541] |
y2+xy=x3−x2−4617x+102541 |
408.2.0.? |
[] |
7650.p1 |
7650m1 |
7650.p |
7650m |
1 |
1 |
2⋅32⋅52⋅17 |
−27⋅37⋅510⋅17 |
0 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
408 |
2 |
0 |
1 |
1 |
|
0 |
20160 |
1.306301 |
2595575/6528 |
0.89849 |
4.32355 |
[1,−1,0,5508,286416] |
y2+xy=x3−x2+5508x+286416 |
408.2.0.? |
[] |
7650.q1 |
7650i2 |
7650.q |
7650i |
2 |
2 |
2⋅32⋅52⋅17 |
24⋅33⋅59⋅174 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
16.24.0.34 |
2B |
4080 |
96 |
3 |
1.064715943 |
1 |
|
4 |
20480 |
1.441566 |
55175798943/1336336 |
1.07311 |
4.75424 |
[1,−1,0,−29742,−1925084] |
y2+xy=x3−x2−29742x−1925084 |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.k.2, 60.12.0.bk.1, … |
[(−100,254)] |
7650.q2 |
7650i1 |
7650.q |
7650i |
2 |
2 |
2⋅32⋅52⋅17 |
−28⋅33⋅59⋅172 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
16.24.0.35 |
2B |
4080 |
96 |
3 |
2.129431887 |
1 |
|
3 |
10240 |
1.094992 |
35937/73984 |
1.06635 |
4.07570 |
[1,−1,0,258,−95084] |
y2+xy=x3−x2+258x−95084 |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 16.24.0.n.1, 30.6.0.a.1, … |
[(108,1034)] |
7650.r1 |
7650h2 |
7650.r |
7650h |
2 |
2 |
2⋅32⋅52⋅17 |
24⋅39⋅53⋅174 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
16.24.0.34 |
2B |
4080 |
96 |
3 |
0.489673188 |
1 |
|
8 |
12288 |
1.186153 |
55175798943/1336336 |
1.07311 |
4.41149 |
[1,−1,0,−10707,420101] |
y2+xy=x3−x2−10707x+420101 |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 16.24.0.k.2, 60.12.0.bk.1, … |
[(74,133)] |
7650.r2 |
7650h1 |
7650.r |
7650h |
2 |
2 |
2⋅32⋅52⋅17 |
−28⋅39⋅53⋅172 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
16.24.0.35 |
2B |
4080 |
96 |
3 |
0.979346377 |
1 |
|
7 |
6144 |
0.839580 |
35937/73984 |
1.06635 |
3.73296 |
[1,−1,0,93,20501] |
y2+xy=x3−x2+93x+20501 |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 16.24.0.n.1, 30.6.0.a.1, … |
[(−10,141)] |
7650.s1 |
7650bf1 |
7650.s |
7650bf |
1 |
1 |
2⋅32⋅52⋅17 |
−27⋅36⋅53⋅17 |
0 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
680 |
2 |
0 |
1 |
1 |
|
0 |
3360 |
0.300014 |
−5177717/2176 |
0.86118 |
3.06692 |
[1,−1,0,−162,−1004] |
y2+xy=x3−x2−162x−1004 |
680.2.0.? |
[] |
7650.t1 |
7650s2 |
7650.t |
7650s |
2 |
3 |
2⋅32⋅52⋅17 |
251⋅313⋅52⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
19.89906373 |
1 |
|
0 |
2056320 |
3.676884 |
873851835888094527083289145/83719665273003835392 |
1.08087 |
8.03420 |
[1,−1,0,−524155977,4618652600461] |
y2+xy=x3−x2−524155977x+4618652600461 |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.? |
[(2377244555/458,34607828116237/458)] |
7650.t2 |
7650s1 |
7650.t |
7650s |
2 |
3 |
2⋅32⋅52⋅17 |
217⋅327⋅52⋅173 |
1 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
6.633021244 |
1 |
|
0 |
685440 |
3.127579 |
16206164115169540524745/6736014906011025408 |
1.07254 |
6.81582 |
[1,−1,0,−13874202,−10555067084] |
y2+xy=x3−x2−13874202x−10555067084 |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.? |
[(−6925/2,734593/2)] |
7650.u1 |
7650b2 |
7650.u |
7650b |
2 |
3 |
2⋅32⋅52⋅17 |
23⋅39⋅510⋅173 |
0 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
1 |
1 |
|
0 |
51840 |
1.789064 |
475854075/39304 |
1.08874 |
5.13981 |
[1,−1,0,−93867,−10225459] |
y2+xy=x3−x2−93867x−10225459 |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.? |
[] |
7650.u2 |
7650b1 |
7650.u |
7650b |
2 |
3 |
2⋅32⋅52⋅17 |
29⋅33⋅510⋅17 |
0 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
1 |
1 |
|
0 |
17280 |
1.239758 |
2816964675/8704 |
0.94945 |
4.60155 |
[1,−1,0,−18867,999541] |
y2+xy=x3−x2−18867x+999541 |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.? |
[] |
7650.v1 |
7650n2 |
7650.v |
7650n |
2 |
3 |
2⋅32⋅52⋅17 |
215⋅37⋅52⋅173 |
0 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
1 |
1 |
|
0 |
17280 |
1.183569 |
1289333385625/482967552 |
1.04029 |
4.21536 |
[1,−1,0,−5967,106861] |
y2+xy=x3−x2−5967x+106861 |
3.4.0.a.1, 15.8.0-3.a.1.2, 408.8.0.?, 2040.16.0.? |
[] |
7650.v2 |
7650n1 |
7650.v |
7650n |
2 |
3 |
2⋅32⋅52⋅17 |
25⋅39⋅52⋅17 |
0 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.4.0.1 |
3B |
2040 |
16 |
0 |
1 |
1 |
|
0 |
5760 |
0.634263 |
105695235625/14688 |
1.21157 |
3.93565 |
[1,−1,0,−2592,−50144] |
y2+xy=x3−x2−2592x−50144 |
3.4.0.a.1, 15.8.0-3.a.1.1, 408.8.0.?, 2040.16.0.? |
[] |
7650.w1 |
7650t1 |
7650.w |
7650t |
1 |
1 |
2⋅32⋅52⋅17 |
−24⋅36⋅510⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
68 |
2 |
0 |
4.000972767 |
1 |
|
2 |
13440 |
1.040831 |
84375/272 |
1.04213 |
3.97527 |
[1,−1,0,1758,−61084] |
y2+xy=x3−x2+1758x−61084 |
68.2.0.a.1 |
[(80,726)] |
7650.x1 |
7650g1 |
7650.x |
7650g |
2 |
3 |
2⋅32⋅52⋅17 |
−23⋅33⋅58⋅17 |
0 |
Z/3Z |
Q |
|
SU(2) |
|
|
3 |
3.8.0.1 |
3B.1.1 |
408 |
16 |
0 |
1 |
1 |
|
2 |
30240 |
1.287674 |
−6667713086715/136 |
0.99141 |
5.11041 |
[1,−1,0,−85992,9727416] |
y2+xy=x3−x2−85992x+9727416 |
3.8.0-3.a.1.2, 408.16.0.? |
[] |
7650.x2 |
7650g2 |
7650.x |
7650g |
2 |
3 |
2⋅32⋅52⋅17 |
−29⋅39⋅58⋅173 |
0 |
trivial |
Q |
|
SU(2) |
|
|
3 |
3.8.0.2 |
3B.1.2 |
408 |
16 |
0 |
1 |
1 |
|
0 |
90720 |
1.836979 |
−7466356035/2515456 |
0.94625 |
5.13902 |
[1,−1,0,−80367,11050541] |
y2+xy=x3−x2−80367x+11050541 |
3.8.0-3.a.1.1, 408.16.0.? |
[] |
7650.y1 |
7650v2 |
7650.y |
7650v |
2 |
2 |
2⋅32⋅52⋅17 |
27⋅312⋅58⋅17 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
2.3.0.1 |
2B |
2040 |
12 |
0 |
1.928888706 |
1 |
|
4 |
129024 |
2.192703 |
172735174415217961/39657600 |
1.00968 |
6.25542 |
[1,−1,0,−2610567,1624145341] |
y2+xy=x3−x2−2610567x+1624145341 |
2.3.0.a.1, 60.6.0.c.1, 136.6.0.?, 2040.12.0.? |
[(939,−157)] |
7650.y2 |
7650v1 |
7650.y |
7650v |
2 |
2 |
2⋅32⋅52⋅17 |
−214⋅39⋅57⋅172 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
2.3.0.1 |
2B |
2040 |
12 |
0 |
0.964444353 |
1 |
|
7 |
64512 |
1.846130 |
−41713327443241/639221760 |
0.96929 |
5.32698 |
[1,−1,0,−162567,25601341] |
y2+xy=x3−x2−162567x+25601341 |
2.3.0.a.1, 30.6.0.a.1, 136.6.0.?, 2040.12.0.? |
[(174,1513)] |
7650.z1 |
7650o1 |
7650.z |
7650o |
2 |
2 |
2⋅32⋅52⋅17 |
22⋅38⋅56⋅17 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
8.6.0.4 |
2B |
136 |
12 |
0 |
1 |
1 |
|
1 |
5120 |
0.590497 |
1771561/612 |
1.28490 |
3.42587 |
[1,−1,0,−567,−3159] |
y2+xy=x3−x2−567x−3159 |
2.3.0.a.1, 8.6.0.d.1, 34.6.0.a.1, 136.12.0.? |
[] |
7650.z2 |
7650o2 |
7650.z |
7650o |
2 |
2 |
2⋅32⋅52⋅17 |
−2⋅310⋅56⋅172 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
8.6.0.5 |
2B |
136 |
12 |
0 |
1 |
1 |
|
0 |
10240 |
0.937071 |
46268279/46818 |
0.94894 |
3.79071 |
[1,−1,0,1683,−23409] |
y2+xy=x3−x2+1683x−23409 |
2.3.0.a.1, 8.6.0.a.1, 68.6.0.c.1, 136.12.0.? |
[] |
7650.ba1 |
7650k1 |
7650.ba |
7650k |
1 |
1 |
2⋅32⋅52⋅17 |
−225⋅39⋅54⋅17 |
1 |
trivial |
Q |
|
SU(2) |
|
|
|
|
|
408 |
2 |
0 |
4.345403229 |
1 |
|
2 |
50400 |
1.803186 |
−11987427957075/570425344 |
1.10900 |
5.20205 |
[1,−1,0,−110067,−14594059] |
y2+xy=x3−x2−110067x−14594059 |
408.2.0.? |
[(979,28063)] |
7650.bb1 |
7650c2 |
7650.bb |
7650c |
2 |
2 |
2⋅32⋅52⋅17 |
25⋅33⋅516⋅172 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
2.3.0.1 |
2B |
120 |
12 |
0 |
1 |
4 |
2 |
0 |
153600 |
2.362469 |
13217291350697580147/90312500000 |
1.07245 |
6.37191 |
[1,−1,0,−3694317,−2732121659] |
y2+xy=x3−x2−3694317x−2732121659 |
2.3.0.a.1, 24.6.0.a.1, 40.6.0.e.1, 60.6.0.c.1, 120.12.0.? |
[] |
7650.bb2 |
7650c1 |
7650.bb |
7650c |
2 |
2 |
2⋅32⋅52⋅17 |
−210⋅33⋅511⋅174 |
0 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
2.3.0.1 |
2B |
120 |
12 |
0 |
1 |
1 |
|
1 |
76800 |
2.015896 |
−3038732943445107/267267200000 |
1.01018 |
5.45087 |
[1,−1,0,−226317,−44421659] |
y2+xy=x3−x2−226317x−44421659 |
2.3.0.a.1, 24.6.0.d.1, 30.6.0.a.1, 40.6.0.e.1, 120.12.0.? |
[] |
7650.bc1 |
7650u1 |
7650.bc |
7650u |
2 |
2 |
2⋅32⋅52⋅17 |
24⋅36⋅58⋅17 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
4.6.0.3 |
2B |
2040 |
48 |
0 |
2.368732142 |
1 |
|
5 |
9216 |
0.814734 |
47045881/6800 |
0.98870 |
3.79257 |
[1,−1,0,−1692,−22784] |
y2+xy=x3−x2−1692x−22784 |
2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 120.12.0.?, … |
[(−25,71)] |
7650.bc2 |
7650u2 |
7650.bc |
7650u |
2 |
2 |
2⋅32⋅52⋅17 |
−22⋅36⋅510⋅172 |
1 |
Z/2Z |
Q |
|
SU(2) |
|
|
2 |
4.6.0.5 |
2B |
2040 |
48 |
0 |
1.184366071 |
1 |
|
6 |
18432 |
1.161308 |
214921799/722500 |
0.91035 |
4.13808 |
[1,−1,0,2808,−126284] |
y2+xy=x3−x2+2808x−126284 |
2.3.0.a.1, 4.6.0.a.1, 60.12.0-4.a.1.1, 68.12.0.d.1, 408.24.0.?, … |
[(54,398)] |