Properties

Label 76440.cn
Number of curves $4$
Conductor $76440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 76440.cn have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76440.cn do not have complex multiplication.

Modular form 76440.2.a.cn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - q^{13} + q^{15} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 76440.cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76440.cn1 76440cy4 \([0, 1, 0, -377120, -89050032]\) \(49235161015876/137109375\) \(16517919600000000\) \([2]\) \(589824\) \(1.9845\)  
76440.cn2 76440cy3 \([0, 1, 0, -351640, 79841600]\) \(39914580075556/172718325\) \(20807821535155200\) \([2]\) \(589824\) \(1.9845\)  
76440.cn3 76440cy2 \([0, 1, 0, -33140, -165600]\) \(133649126224/77000625\) \(2319115911840000\) \([2, 2]\) \(294912\) \(1.6379\)  
76440.cn4 76440cy1 \([0, 1, 0, 8265, -16542]\) \(33165879296/19278675\) \(-36289869361200\) \([2]\) \(147456\) \(1.2913\) \(\Gamma_0(N)\)-optimal