Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-5797837112x-169919579126239\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-5797837112xz^2-169919579126239z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-92765393787x-10874945829473066\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(612512183251/5189284, 331598121024005643/11821188952)$ | $27.457428783017232104125648217$ | $\infty$ |
$(-175845/4, 175841/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 76230 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $3095388168030254250$ | = | $2 \cdot 3^{7} \cdot 5^{3} \cdot 7^{4} \cdot 11^{9} $ |
|
j-invariant: | $j$ | = | \( \frac{16689299266861680229173649}{2396798250} \) | = | $2^{-1} \cdot 3^{-1} \cdot 5^{-3} \cdot 7^{-4} \cdot 11^{-3} \cdot 73^{3} \cdot 131^{3} \cdot 26723^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.8706754119346698826535480644$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.1224216312014297649249536570$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0344564436307178$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.032494103150137$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $27.457428783017232104125648217$ |
|
Real period: | $\Omega$ | ≈ | $0.017301471919413664967628313233$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 1\cdot2\cdot3\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $11.401294393648155881551649424 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $4$ = $2^2$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.401294394 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.017301 \cdot 27.457429 \cdot 24}{2^2} \\ & \approx 11.401294394\end{aligned}$$
Modular invariants
Modular form 76230.2.a.ee
For more coefficients, see the Downloads section to the right.
Modular degree: | 39813120 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$7$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$11$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.8 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 5864 & 9237 \\ 2139 & 86 \end{array}\right),\left(\begin{array}{rr} 2311 & 24 \\ 2310 & 1 \end{array}\right),\left(\begin{array}{rr} 4242 & 2719 \\ 7037 & 6692 \end{array}\right),\left(\begin{array}{rr} 9217 & 24 \\ 9216 & 25 \end{array}\right),\left(\begin{array}{rr} 3712 & 21 \\ 8955 & 8866 \end{array}\right),\left(\begin{array}{rr} 5281 & 24 \\ 7932 & 289 \end{array}\right),\left(\begin{array}{rr} 6144 & 7681 \\ 5575 & 1134 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 7934 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \) |
$3$ | additive | $8$ | \( 1694 = 2 \cdot 7 \cdot 11^{2} \) |
$5$ | split multiplicative | $6$ | \( 15246 = 2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 10890 = 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
$11$ | additive | $72$ | \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 76230ej
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2310t7, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{330}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-330}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-11}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.2.9199872000.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{330})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-11}, \sqrt{-30})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{11})\) | \(\Z/12\Z\) | not in database |
$4$ | \(\Q(\sqrt{-11}, \sqrt{30})\) | \(\Z/12\Z\) | not in database |
$6$ | 6.2.9057826551312.16 | \(\Z/6\Z\) | not in database |
$8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$8$ | 8.0.48575324160000.185 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$18$ | 18.0.309879078930903420599824414597211668687500000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | split | nonsplit | add | ord | ord | ord | ss | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 5 | - | 2 | 1 | - | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 1 | - | 0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.