Properties

Label 76050et
Number of curves $2$
Conductor $76050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("et1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 76050et have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76050et do not have complex multiplication.

Modular form 76050.2.a.et

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 3 q^{7} + q^{8} + 3 q^{11} + 3 q^{14} + q^{16} - 4 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 76050et

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76050.fu2 76050et1 \([1, -1, 1, -197255, -54902753]\) \(-2609064081/2500000\) \(-813319101562500000\) \([]\) \(1290240\) \(2.1329\) \(\Gamma_0(N)\)-optimal
76050.fu1 76050et2 \([1, -1, 1, -17308505, 29963933497]\) \(-1762712152495281/171798691840\) \(-55890863078768640000000\) \([]\) \(9031680\) \(3.1058\)