Properties

Label 76050ct
Number of curves $2$
Conductor $76050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ct1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 76050ct have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76050ct do not have complex multiplication.

Modular form 76050.2.a.ct

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{7} - q^{8} - 4 q^{14} + q^{16} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 76050ct

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76050.cu2 76050ct1 \([1, -1, 0, 455508, 2549221416]\) \(7604375/2047032\) \(-2813664483815371875000\) \([]\) \(4354560\) \(2.7949\) \(\Gamma_0(N)\)-optimal
76050.cu1 76050ct2 \([1, -1, 0, -127878867, 556722719541]\) \(-168256703745625/30371328\) \(-41745672231751800000000\) \([]\) \(13063680\) \(3.3442\)