Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+19886283x+45630485941\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+19886283xz^2+45630485941z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+318180525x+2920669280750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 76050 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-1402997115579531264000000$ | = | $-1 \cdot 2^{24} \cdot 3^{8} \cdot 5^{6} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{93603087383}{150994944} \) | = | $2^{-24} \cdot 3^{-2} \cdot 13 \cdot 1931^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3185329002441158092346552973$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.25454156138531961886766138451$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0580983204947527$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.570800978641449$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.058247854871951245370432890263$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.23299141948780498148173156105 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.232991419 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.058248 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 0.232991419\end{aligned}$$
Modular invariants
Modular form 76050.2.a.u
For more coefficients, see the Downloads section to the right.
Modular degree: | 12939264 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{24}$ | nonsplit multiplicative | 1 | 1 | 24 | 24 |
$3$ | $2$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$13$ | $1$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 4.2.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $32$, genus $0$, and generators
$\left(\begin{array}{rr} 19 & 15 \\ 5 & 44 \end{array}\right),\left(\begin{array}{rr} 109 & 12 \\ 108 & 13 \end{array}\right),\left(\begin{array}{rr} 23 & 0 \\ 0 & 119 \end{array}\right),\left(\begin{array}{rr} 61 & 105 \\ 15 & 76 \end{array}\right),\left(\begin{array}{rr} 39 & 115 \\ 65 & 44 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 82 & 105 \end{array}\right),\left(\begin{array}{rr} 4 & 9 \\ 3 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 91 & 60 \\ 105 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$1105920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 38025 = 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
$3$ | additive | $8$ | \( 4225 = 5^{2} \cdot 13^{2} \) |
$5$ | additive | $14$ | \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \) |
$13$ | additive | $74$ | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 76050bo
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 1014f2, its twist by $-195$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.676.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1827904.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.632436933375.3 | \(\Z/3\Z\) | not in database |
$6$ | 6.2.57122000.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.38374952972040897577997633352000000000.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.1036123730245104234605936100504000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | add | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 8 | - | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | 0 | - | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.