Properties

Label 7595.j
Number of curves $1$
Conductor $7595$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 7595.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7595.j1 7595f1 \([0, 0, 1, -1664383, 1442484699]\) \(-4334063657515831296/5132293701171875\) \(-603809221649169921875\) \([]\) \(626688\) \(2.6814\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 7595.j1 has rank \(1\).

Complex multiplication

The elliptic curves in class 7595.j do not have complex multiplication.

Modular form 7595.2.a.j

sage: E.q_eigenform(10)
 
\(q + 2 q^{2} - 3 q^{3} + 2 q^{4} - q^{5} - 6 q^{6} + 6 q^{9} - 2 q^{10} - q^{11} - 6 q^{12} + q^{13} + 3 q^{15} - 4 q^{16} - q^{17} + 12 q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display