Properties

Label 75840.z
Number of curves $1$
Conductor $75840$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 75840.z1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 75840.z do not have complex multiplication.

Modular form 75840.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - q^{7} + q^{9} + 5 q^{11} + 5 q^{13} - q^{15} - 3 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 75840.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
75840.z1 75840q1 \([0, -1, 0, -60, 342]\) \(-379503424/479925\) \(-30715200\) \([]\) \(23040\) \(0.12997\) \(\Gamma_0(N)\)-optimal