Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2+75803x-6021491\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z+75803xz^2-6021491z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+98240013x-282412287666\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3323, 190571)$ | $4.3994223215477309040387906703$ | $\infty$ |
$(74, -37)$ | $0$ | $2$ |
Integral points
\( \left(74, -37\right) \), \( \left(3323, 190571\right) \), \( \left(3323, -193894\right) \)
Invariants
Conductor: | $N$ | = | \( 75810 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $-43704343801036800$ | = | $-1 \cdot 2^{16} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 19^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{1023887723039}{928972800} \) | = | $2^{-16} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{-1} \cdot 10079^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8803545453588926581230877204$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.40813505577567242811857400446$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.999810038071446$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.033581381021681$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.3994223215477309040387906703$ |
|
Real period: | $\Omega$ | ≈ | $0.19771179829577714293864654577$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.4792707946231383388222807762 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.479270795 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.197712 \cdot 4.399422 \cdot 16}{2^2} \\ & \approx 3.479270795\end{aligned}$$
Modular invariants
Modular form 75810.2.a.q
For more coefficients, see the Downloads section to the right.
Modular degree: | 884736 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{16}$ | nonsplit multiplicative | 1 | 1 | 16 | 16 |
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$19$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.96 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 63840 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 45943 & 50426 \\ 27702 & 17291 \end{array}\right),\left(\begin{array}{rr} 15543 & 23522 \\ 59242 & 36975 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 16151 & 50426 \\ 12198 & 875 \end{array}\right),\left(\begin{array}{rr} 4352 & 53789 \\ 37867 & 19362 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 61278 & 61835 \end{array}\right),\left(\begin{array}{rr} 45601 & 57152 \\ 58634 & 3839 \end{array}\right),\left(\begin{array}{rr} 43679 & 0 \\ 0 & 63839 \end{array}\right),\left(\begin{array}{rr} 63809 & 32 \\ 63808 & 33 \end{array}\right)$.
The torsion field $K:=\Q(E[63840])$ is a degree-$2928003357081600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/63840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 2527 = 7 \cdot 19^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 25270 = 2 \cdot 5 \cdot 7 \cdot 19^{2} \) |
$5$ | split multiplicative | $6$ | \( 15162 = 2 \cdot 3 \cdot 7 \cdot 19^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 10830 = 2 \cdot 3 \cdot 5 \cdot 19^{2} \) |
$19$ | additive | $182$ | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 75810.q
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 210.e7, its twist by $-19$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{133}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-19}) \) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{-19})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-15}, \sqrt{-19})\) | \(\Z/16\Z\) | not in database |
$4$ | \(\Q(\sqrt{-19}, \sqrt{105})\) | \(\Z/16\Z\) | not in database |
$8$ | 8.0.2453141652640000.25 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.2453141652640000.3 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.15840599000625.2 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | split | nonsplit | ord | ord | ord | add | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 4 | 3 | 2 | 1 | 3 | 1 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.