Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 0, -25255692, 48817755216]); // or

magma: E := EllipticCurve("75150i2");

sage: E = EllipticCurve([1, -1, 0, -25255692, 48817755216]) # or

sage: E = EllipticCurve("75150i2")

gp: E = ellinit([1, -1, 0, -25255692, 48817755216]) \\ or

gp: E = ellinit("75150i2")

$$y^2 + x y = x^{3} - x^{2} - 25255692 x + 48817755216$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(2529, 32148\right)$$ $$\left(2829, 723\right)$$ $$\hat{h}(P)$$ ≈ 3.03431282387 4.29288073325

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(\frac{11331}{4}, -\frac{11331}{8}\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(2529, 32148\right)$$, $$\left(2829, 723\right)$$, $$\left(6739, 426318\right)$$, $$\left(8685, 691731\right)$$, $$\left(319239, 180191943\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$75150$$ = $$2 \cdot 3^{2} \cdot 5^{2} \cdot 167$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$1733411074218750000000$$ = $$2^{7} \cdot 3^{12} \cdot 5^{16} \cdot 167$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{156406207396688718841}{152178750000000}$$ = $$2^{-7} \cdot 3^{-6} \cdot 5^{-10} \cdot 29^{3} \cdot 167^{-1} \cdot 185789^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$2$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$12.7220018319$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$0.148374731415$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$16$$  = $$1\cdot2^{2}\cdot2^{2}\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$2$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 75150.2.a.h

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q - q^{2} + q^{4} - 2q^{7} - q^{8} - 2q^{13} + 2q^{14} + q^{16} - 6q^{17} + 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 5806080 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L^{(2)}(E,1)/2!$$ ≈ $$7.5504944195$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_{7}$$ Non-split multiplicative 1 1 7 7
$$3$$ $$4$$ $$I_6^{*}$$ Additive -1 2 12 6
$$5$$ $$4$$ $$I_10^{*}$$ Additive 1 2 16 10
$$167$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 167 nonsplit add add ordinary ss ordinary ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary nonsplit 4 - - 2 2,2 2 2 2 2 2,2 2 2 2 2 2 2 0 - - 0 0,0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 75150i consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{334})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
4 4.0.1202400.3 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.