Learn more

Refine search


Results (12 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
75.a1 75.a \( 3 \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -208, -1256]$ \(y^2+y=x^3+x^2-208x-1256\)
75.a2 75.a \( 3 \cdot 5^{2} \) $0$ $\Z/5\Z$ $1$ $[0, 1, 1, 2, 4]$ \(y^2+y=x^3+x^2+2x+4\)
75.b1 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -54001, -4834477]$ \(y^2+xy+y=x^3-54001x-4834477\)
75.b2 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -3376, -75727]$ \(y^2+xy+y=x^3-3376x-75727\)
75.b3 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, -2751, -104477]$ \(y^2+xy+y=x^3-2751x-104477\)
75.b4 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2001, 34273]$ \(y^2+xy+y=x^3-2001x+34273\)
75.b5 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -251, -727]$ \(y^2+xy+y=x^3-251x-727\)
75.b6 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -126, 523]$ \(y^2+xy+y=x^3-126x+523\)
75.b7 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1, 23]$ \(y^2+xy+y=x^3-x+23\)
75.b8 75.b \( 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 874, -5227]$ \(y^2+xy+y=x^3+874x-5227\)
75.c1 75.c \( 3 \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -8, -7]$ \(y^2+y=x^3-x^2-8x-7\)
75.c2 75.c \( 3 \cdot 5^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 42, 443]$ \(y^2+y=x^3-x^2+42x+443\)
  Download to