Properties

Label 74970.x
Number of curves $4$
Conductor $74970$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 74970.x have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 74970.x do not have complex multiplication.

Modular form 74970.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + 4 q^{11} - 2 q^{13} + q^{16} + q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 74970.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
74970.x1 74970be4 \([1, -1, 0, -609042030, 5785360687700]\) \(291306206119284545407569/101150000000\) \(8675243139150000000\) \([2]\) \(16515072\) \(3.4275\)  
74970.x2 74970be3 \([1, -1, 0, -45126510, 54541951316]\) \(118495863754334673489/53596139570691200\) \(4596732991552789512835200\) \([2]\) \(16515072\) \(3.4275\)  
74970.x3 74970be2 \([1, -1, 0, -38070510, 90376552916]\) \(71149857462630609489/41907496960000\) \(3594243455078492160000\) \([2, 2]\) \(8257536\) \(3.0809\)  
74970.x4 74970be1 \([1, -1, 0, -1943790, 1945567700]\) \(-9470133471933009/13576123187200\) \(-1164371423984300851200\) \([2]\) \(4128768\) \(2.7343\) \(\Gamma_0(N)\)-optimal