Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-1454868x+612004329\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-1454868xz^2+612004329z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-23277891x+39144999166\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-936, 34425)$ | $4.1797859811996230845605448613$ | $\infty$ |
| $(3459/4, -3459/8)$ | $0$ | $2$ |
Integral points
\( \left(-936, 34425\right) \), \( \left(-936, -33489\right) \)
Invariants
| Conductor: | $N$ | = | \( 74529 \) | = | $3^{2} \cdot 7^{2} \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $35470764278396543187$ | = | $3^{7} \cdot 7^{6} \cdot 13^{10} $ |
|
| j-invariant: | $j$ | = | \( \frac{822656953}{85683} \) | = | $3^{-1} \cdot 13^{-4} \cdot 937^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4863694354640924133282656938$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.31836646212838745294877701716$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9608618677341092$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.829766740634659$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.1797859811996230845605448613$ |
|
| Real period: | $\Omega$ | ≈ | $0.20013369926013141698636943170$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.6921282442649494024648966969 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.692128244 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.200134 \cdot 4.179786 \cdot 32}{2^2} \\ & \approx 6.692128244\end{aligned}$$
Modular invariants
Modular form 74529.2.a.bf
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1548288 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $13$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2177 & 8 \\ 2176 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1912 & 203 \\ 1603 & 1632 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 167 & 616 \\ 980 & 279 \end{array}\right),\left(\begin{array}{rr} 43 & 42 \\ 2002 & 1219 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2178 & 2179 \end{array}\right),\left(\begin{array}{rr} 1448 & 1869 \\ 203 & 622 \end{array}\right),\left(\begin{array}{rr} 935 & 0 \\ 0 & 2183 \end{array}\right)$.
The torsion field $K:=\Q(E[2184])$ is a degree-$81155063808$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | additive | $8$ | \( 8281 = 7^{2} \cdot 13^{2} \) |
| $7$ | additive | $26$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 441 = 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 74529z
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 39a3, its twist by $273$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{273}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{91}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{91})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.3276219781545984.114 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.1421970391296.2 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.3276219781545984.80 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | add | ord | add | ord | add | ord | ss | ss | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | ? | - | 1 | - | 1 | - | 3 | 1,3 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | ? | - | 0 | - | 0 | - | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.