Properties

Label 7448.c
Number of curves $1$
Conductor $7448$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 7448.c1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7448.c do not have complex multiplication.

Modular form 7448.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - q^{5} + q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} - 7 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 7448.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7448.c1 7448i1 \([0, 1, 0, -71801, 7932091]\) \(-27739393024/2476099\) \(-3654199805772544\) \([]\) \(42000\) \(1.7297\) \(\Gamma_0(N)\)-optimal