Properties

Label 7440.q
Number of curves $4$
Conductor $7440$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 7440.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7440.q1 7440u3 \([0, 1, 0, -106056, -13329036]\) \(32208729120020809/658986840\) \(2699210096640\) \([2]\) \(27648\) \(1.5049\)  
7440.q2 7440u2 \([0, 1, 0, -6856, -194956]\) \(8702409880009/1120910400\) \(4591248998400\) \([2, 2]\) \(13824\) \(1.1583\)  
7440.q3 7440u1 \([0, 1, 0, -1736, 24180]\) \(141339344329/17141760\) \(70212648960\) \([2]\) \(6912\) \(0.81173\) \(\Gamma_0(N)\)-optimal
7440.q4 7440u4 \([0, 1, 0, 10424, -1003660]\) \(30579142915511/124675335000\) \(-510670172160000\) \([2]\) \(27648\) \(1.5049\)  

Rank

sage: E.rank()
 

The elliptic curves in class 7440.q have rank \(0\).

Complex multiplication

The elliptic curves in class 7440.q do not have complex multiplication.

Modular form 7440.2.a.q

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} + 4 q^{11} + 6 q^{13} - q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.