Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-1275443x-28530242\)
|
(homogenize, simplify) |
\(y^2z=x^3-1275443xz^2-28530242z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1275443x-28530242\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-29, 2904)$ | $2.3948564186988163198184373059$ | $\infty$ |
$(-1118, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1118, 0\right) \), \((-29,\pm 2904)\)
Invariants
Conductor: | $N$ | = | \( 74360 \) | = | $2^{3} \cdot 5 \cdot 11 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $132437680133213312000$ | = | $2^{10} \cdot 5^{3} \cdot 11^{8} \cdot 13^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{46424454082884}{26794860125} \) | = | $2^{2} \cdot 3^{3} \cdot 5^{-3} \cdot 11^{-8} \cdot 7547^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5505806428956262393164629883$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.69048331369823678010869249963$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1395461376610276$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.795540825297118$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.3948564186988163198184373059$ |
|
Real period: | $\Omega$ | ≈ | $0.15501603523724801236783635745$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot1\cdot2^{3}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.9699291759133223226735610509 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.969929176 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.155016 \cdot 2.394856 \cdot 32}{2^2} \\ & \approx 2.969929176\end{aligned}$$
Modular invariants
Modular form 74360.2.a.f
For more coefficients, see the Downloads section to the right.
Modular degree: | 2211840 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | -1 | 3 | 10 | 0 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$11$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$13$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.10 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 11440 = 2^{4} \cdot 5 \cdot 11 \cdot 13 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 8799 & 0 \\ 0 & 11439 \end{array}\right),\left(\begin{array}{rr} 2081 & 3536 \\ 6968 & 5409 \end{array}\right),\left(\begin{array}{rr} 1327 & 2210 \\ 5642 & 7463 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 8 & 65 \end{array}\right),\left(\begin{array}{rr} 8581 & 9906 \\ 3640 & 3251 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 11425 & 16 \\ 11424 & 17 \end{array}\right),\left(\begin{array}{rr} 6878 & 3523 \\ 8541 & 7060 \end{array}\right),\left(\begin{array}{rr} 15 & 166 \\ 11154 & 8275 \end{array}\right)$.
The torsion field $K:=\Q(E[11440])$ is a degree-$21254897664000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/11440\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 845 = 5 \cdot 13^{2} \) |
$3$ | good | $2$ | \( 14872 = 2^{3} \cdot 11 \cdot 13^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 14872 = 2^{3} \cdot 11 \cdot 13^{2} \) |
$11$ | split multiplicative | $12$ | \( 6760 = 2^{3} \cdot 5 \cdot 13^{2} \) |
$13$ | additive | $86$ | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 74360.f
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 440.c1, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-13}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-65}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{-13})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.1827904000000.6 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2924646400.8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.29246464000000.42 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ss | nonsplit | ord | split | add | ord | ord | ord | ord | ord | ord | ord | ss | ord |
$\lambda$-invariant(s) | - | 1,3 | 1 | 1 | 2 | - | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1,1 | 1 |
$\mu$-invariant(s) | - | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.