Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-1107580x-178710403\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-1107580xz^2-178710403z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1435423707x-8316381198474\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(4499/4, -4503/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 7410 \) | = | $2 \cdot 3 \cdot 5 \cdot 13 \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $73231357863424756320$ | = | $2^{5} \cdot 3^{32} \cdot 5 \cdot 13 \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{150261960680978721232321}{73231357863424756320} \) | = | $2^{-5} \cdot 3^{-32} \cdot 5^{-1} \cdot 13^{-1} \cdot 19^{-1} \cdot 53163841^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5050961211539551523722984161$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.5050961211539551523722984161$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0172880785609402$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.989131221618553$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.15458331767073276237560085506$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 10 $ = $ 5\cdot2\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.5458331767073276237560085506 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.545833177 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.154583 \cdot 1.000000 \cdot 10}{2^2} \\ & \approx 1.545833177\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 327680 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$3$ | $2$ | $I_{32}$ | nonsplit multiplicative | 1 | 1 | 32 | 32 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.6 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9880 = 2^{3} \cdot 5 \cdot 13 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 3804 & 1 \\ 4583 & 6 \end{array}\right),\left(\begin{array}{rr} 9873 & 8 \\ 9872 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 6248 & 3 \\ 8845 & 2 \end{array}\right),\left(\begin{array}{rr} 8648 & 3713 \\ 1227 & 1214 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 9874 & 9875 \end{array}\right),\left(\begin{array}{rr} 5936 & 3 \\ 5 & 2 \end{array}\right),\left(\begin{array}{rr} 6176 & 1243 \\ 6179 & 6208 \end{array}\right)$.
The torsion field $K:=\Q(E[9880])$ is a degree-$49562556825600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9880\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1235 = 5 \cdot 13 \cdot 19 \) |
$3$ | nonsplit multiplicative | $4$ | \( 2470 = 2 \cdot 5 \cdot 13 \cdot 19 \) |
$5$ | split multiplicative | $6$ | \( 741 = 3 \cdot 13 \cdot 19 \) |
$13$ | split multiplicative | $14$ | \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 7410q
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2470}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{26}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{95}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{26}, \sqrt{95})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.4.427448320.1 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 13 | 19 |
---|---|---|---|---|---|
Reduction type | split | nonsplit | split | split | nonsplit |
$\lambda$-invariant(s) | 2 | 0 | 3 | 1 | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.