Properties

Label 7410.l
Number of curves $4$
Conductor $7410$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 7410.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7410.l1 7410l4 \([1, 0, 1, -853958, 303669056]\) \(68870385718115337310681/39076171875000\) \(39076171875000\) \([2]\) \(73728\) \(1.9342\)  
7410.l2 7410l3 \([1, 0, 1, -118678, -8887552]\) \(184854108796733228761/72928592456733000\) \(72928592456733000\) \([2]\) \(73728\) \(1.9342\)  
7410.l3 7410l2 \([1, 0, 1, -53678, 4684448]\) \(17104132791725468761/400280049000000\) \(400280049000000\) \([2, 2]\) \(36864\) \(1.5876\)  
7410.l4 7410l1 \([1, 0, 1, 402, 228256]\) \(7210309838759/22505154048000\) \(-22505154048000\) \([2]\) \(18432\) \(1.2410\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 7410.l have rank \(1\).

Complex multiplication

The elliptic curves in class 7410.l do not have complex multiplication.

Modular form 7410.2.a.l

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} - q^{13} + q^{15} + q^{16} + 2 q^{17} - q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.