Properties

Label 7392l
Number of curves $4$
Conductor $7392$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7392l have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7392l do not have complex multiplication.

Modular form 7392.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} + q^{7} + q^{9} + q^{11} - 2 q^{13} - 2 q^{15} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 7392l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7392.f3 7392l1 \([0, -1, 0, -602, 1200]\) \(377619516352/211789809\) \(13554547776\) \([2, 2]\) \(4608\) \(0.63434\) \(\Gamma_0(N)\)-optimal
7392.f2 7392l2 \([0, -1, 0, -5992, -175592]\) \(46477380430664/286446699\) \(146660709888\) \([2]\) \(9216\) \(0.98092\)  
7392.f1 7392l3 \([0, -1, 0, -7217, 238017]\) \(10150654719808/19370043\) \(79339696128\) \([4]\) \(9216\) \(0.98092\)  
7392.f4 7392l4 \([0, -1, 0, 2368, 7140]\) \(2866919053816/1712145897\) \(-876618699264\) \([2]\) \(9216\) \(0.98092\)