Show commands: SageMath
Rank
The elliptic curves in class 7392l have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 7392l do not have complex multiplication.Modular form 7392.2.a.l
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 7392l
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
7392.f3 | 7392l1 | \([0, -1, 0, -602, 1200]\) | \(377619516352/211789809\) | \(13554547776\) | \([2, 2]\) | \(4608\) | \(0.63434\) | \(\Gamma_0(N)\)-optimal |
7392.f2 | 7392l2 | \([0, -1, 0, -5992, -175592]\) | \(46477380430664/286446699\) | \(146660709888\) | \([2]\) | \(9216\) | \(0.98092\) | |
7392.f1 | 7392l3 | \([0, -1, 0, -7217, 238017]\) | \(10150654719808/19370043\) | \(79339696128\) | \([4]\) | \(9216\) | \(0.98092\) | |
7392.f4 | 7392l4 | \([0, -1, 0, 2368, 7140]\) | \(2866919053816/1712145897\) | \(-876618699264\) | \([2]\) | \(9216\) | \(0.98092\) |