Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-21856065x+35724585663\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-21856065xz^2+35724585663z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1770341292x+26048533972176\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-5343, 0)$ | $0$ | $2$ |
Integral points
\( \left(-5343, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 73920 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $116620583868878487552000$ | = | $2^{19} \cdot 3^{4} \cdot 5^{3} \cdot 7 \cdot 11^{12} $ |
|
j-invariant: | $j$ | = | \( \frac{4404531606962679693649}{444872222400201750} \) | = | $2^{-1} \cdot 3^{-4} \cdot 5^{-3} \cdot 7^{-1} \cdot 11^{-12} \cdot 47^{3} \cdot 229^{3} \cdot 1523^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.1621424020413477290508018392$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.1224216312014297649249536570$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.013360225210077$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.5583821688264905$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.10200770448686997801676885150$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 96 $ = $ 2^{2}\cdot2^{2}\cdot3\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.4481849076848794724024524359 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.448184908 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.102008 \cdot 1.000000 \cdot 96}{2^2} \\ & \approx 2.448184908\end{aligned}$$
Modular invariants
Modular form 73920.2.a.gp
For more coefficients, see the Downloads section to the right.
Modular degree: | 7962624 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{9}^{*}$ | additive | -1 | 6 | 19 | 1 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$11$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 4998 & 6521 \\ 2203 & 2548 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 7934 & 11 \end{array}\right),\left(\begin{array}{rr} 1336 & 3 \\ 6141 & 9154 \end{array}\right),\left(\begin{array}{rr} 7701 & 6164 \\ 8 & 4653 \end{array}\right),\left(\begin{array}{rr} 2521 & 24 \\ 2532 & 289 \end{array}\right),\left(\begin{array}{rr} 6914 & 9219 \\ 7215 & 374 \end{array}\right),\left(\begin{array}{rr} 9217 & 24 \\ 9216 & 25 \end{array}\right),\left(\begin{array}{rr} 3712 & 21 \\ 8955 & 8866 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 35 = 5 \cdot 7 \) |
$3$ | split multiplicative | $4$ | \( 448 = 2^{6} \cdot 7 \) |
$5$ | split multiplicative | $6$ | \( 14784 = 2^{6} \cdot 3 \cdot 7 \cdot 11 \) |
$7$ | nonsplit multiplicative | $8$ | \( 10560 = 2^{6} \cdot 3 \cdot 5 \cdot 11 \) |
$11$ | nonsplit multiplicative | $12$ | \( 6720 = 2^{6} \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 73920hf
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2310t8, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{70}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-14}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{6}) \) | \(\Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-5}, \sqrt{-14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{70})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{-14})\) | \(\Z/12\Z\) | not in database |
$4$ | \(\Q(\sqrt{-5}, \sqrt{6})\) | \(\Z/12\Z\) | not in database |
$6$ | 6.0.290358577152.13 | \(\Z/6\Z\) | not in database |
$8$ | 8.4.7710244864000000.32 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.7965941760000.23 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$18$ | 18.6.5859025065106854728634977947901171859456000000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 |
---|---|---|---|---|---|
Reduction type | add | split | split | nonsplit | nonsplit |
$\lambda$-invariant(s) | - | 3 | 1 | 0 | 0 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.