Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3+x^2-945x+5103\) | (homogenize, simplify) | 
| \(y^2z=x^3+x^2z-945xz^2+5103z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-76572x+3949776\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(3, 48)$ | $1.0697183271799926830350907748$ | $\infty$ | 
| $(27, 0)$ | $0$ | $2$ | 
Integral points
      
    \((-27,\pm 108)\), \((3,\pm 48)\), \( \left(27, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 73920 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11$ |  | 
| Discriminant: | $\Delta$ | = | $41385738240$ | = | $2^{14} \cdot 3^{8} \cdot 5 \cdot 7 \cdot 11 $ |  | 
| j-invariant: | $j$ | = | \( \frac{5702413264}{2525985} \) | = | $2^{4} \cdot 3^{-8} \cdot 5^{-1} \cdot 7^{-1} \cdot 11^{-1} \cdot 709^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.73285529977275923345450698546$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.075816410880510294198930489574$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.8404567195900786$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.8694108989939657$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.0697183271799926830350907748$ |  | 
| Real period: | $\Omega$ | ≈ | $1.0296946901232893425882278875$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{3}\cdot1\cdot1\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $8.8118662513984480741814897585 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 8.811866251 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.029695 \cdot 1.069718 \cdot 32}{2^2} \\ & \approx 8.811866251\end{aligned}$$
Modular invariants
Modular form 73920.2.a.ib
For more coefficients, see the Downloads section to the right.
| Modular degree: | 65536 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}^{*}$ | additive | 1 | 6 | 14 | 0 | 
| $3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 | 
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.12.0.6 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3080 = 2^{3} \cdot 5 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2644 & 1 \\ 1343 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 844 & 1 \\ 2543 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1856 & 3 \\ 5 & 2 \end{array}\right),\left(\begin{array}{rr} 1929 & 1928 \\ 398 & 1935 \end{array}\right),\left(\begin{array}{rr} 1917 & 1922 \\ 1150 & 2693 \end{array}\right),\left(\begin{array}{rr} 3073 & 8 \\ 3072 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 3074 & 3075 \end{array}\right)$.
The torsion field $K:=\Q(E[3080])$ is a degree-$408748032000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3080\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 385 = 5 \cdot 7 \cdot 11 \) | 
| $3$ | split multiplicative | $4$ | \( 24640 = 2^{6} \cdot 5 \cdot 7 \cdot 11 \) | 
| $5$ | split multiplicative | $6$ | \( 14784 = 2^{6} \cdot 3 \cdot 7 \cdot 11 \) | 
| $7$ | split multiplicative | $8$ | \( 10560 = 2^{6} \cdot 3 \cdot 5 \cdot 11 \) | 
| $11$ | split multiplicative | $12$ | \( 6720 = 2^{6} \cdot 3 \cdot 5 \cdot 7 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 73920dt
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 9240a1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{385}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{154}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{10}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{10}, \sqrt{154})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | 4.4.584362240.1 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.6071296000000.4 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/16\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | split | split | split | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 6 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
