Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-6419201x-10677462015\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-6419201xz^2-10677462015z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-519955308x-7785429674832\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(317708123731/92948881, 76587095681466188/896120161721)$ | $26.187933515839643353059462246$ | $\infty$ |
| $(3135, 0)$ | $0$ | $2$ |
Integral points
\( \left(3135, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 73920 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-32342607066469161369600$ | = | $-1 \cdot 2^{17} \cdot 3^{3} \cdot 5^{2} \cdot 7^{16} \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( -\frac{223180773010681046402}{246754509479287425} \) | = | $-1 \cdot 2 \cdot 3^{-3} \cdot 5^{-2} \cdot 7^{-16} \cdot 11^{-1} \cdot 97^{3} \cdot 49633^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0138548177616387549855087075$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.0318963119683828999777632021$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0103263266334293$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.325817491817149$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $26.187933515839643353059462246$ |
|
| Real period: | $\Omega$ | ≈ | $0.045454248543489619812094958563$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot1\cdot2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.7614113554774284295584934805 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.761411355 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.045454 \cdot 26.187934 \cdot 16}{2^2} \\ & \approx 4.761411355\end{aligned}$$
Modular invariants
Modular form 73920.2.a.p
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4718592 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{7}^{*}$ | additive | 1 | 6 | 17 | 0 |
| $3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $2$ | $I_{16}$ | nonsplit multiplicative | 1 | 1 | 16 | 16 |
| $11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.24.0.95 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 736 & 5 \\ 1395 & 2626 \end{array}\right),\left(\begin{array}{rr} 1768 & 1 \\ 959 & 10 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 2542 & 2627 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 2625 & 16 \\ 2624 & 17 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 2636 & 2637 \end{array}\right),\left(\begin{array}{rr} 1006 & 665 \\ 1605 & 1306 \end{array}\right),\left(\begin{array}{rr} 1964 & 1979 \\ 1161 & 1310 \end{array}\right),\left(\begin{array}{rr} 541 & 16 \\ 1328 & 2325 \end{array}\right)$.
The torsion field $K:=\Q(E[2640])$ is a degree-$38928384000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 33 = 3 \cdot 11 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 24640 = 2^{6} \cdot 5 \cdot 7 \cdot 11 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 14784 = 2^{6} \cdot 3 \cdot 7 \cdot 11 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 10560 = 2^{6} \cdot 3 \cdot 5 \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 6720 = 2^{6} \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 73920b
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 9240bh6, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{33}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-66}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{33})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-55})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-15})\) | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.5416809268248576.21 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.3035957760000.10 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | nonsplit | nonsplit | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.