Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-21296065x+37819097663\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-21296065xz^2+37819097663z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1724981292x+27575297140176\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2657, 0)$ | $0$ | $2$ |
$(2671, 0)$ | $0$ | $2$ |
Integral points
\( \left(-5329, 0\right) \), \( \left(2657, 0\right) \), \( \left(2671, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 73920 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $12800137641984000000$ | = | $2^{20} \cdot 3^{2} \cdot 5^{6} \cdot 7^{2} \cdot 11^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{4074571110566294433649}{48828650062500} \) | = | $2^{-2} \cdot 3^{-2} \cdot 5^{-6} \cdot 7^{-2} \cdot 11^{-6} \cdot 37^{3} \cdot 43^{3} \cdot 10039^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8155688117613750743421857784$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.7758480409214571102163375962$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.01113946906003$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.551436290287142$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.20401540897373995603353770299$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2^{2}\cdot2\cdot( 2 \cdot 3 )\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.4481849076848794724024524359 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.448184908 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.204015 \cdot 1.000000 \cdot 192}{4^2} \\ & \approx 2.448184908\end{aligned}$$
Modular invariants
Modular form 73920.2.a.gp
For more coefficients, see the Downloads section to the right.
Modular degree: | 3981312 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 6 | 20 | 2 |
$3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$5$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 2521 & 12 \\ 5886 & 73 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 9224 & 9233 \end{array}\right),\left(\begin{array}{rr} 2303 & 9234 \\ 48 & 41 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 4613 & 9234 \\ 6 & 5 \end{array}\right),\left(\begin{array}{rr} 9229 & 12 \\ 9228 & 13 \end{array}\right),\left(\begin{array}{rr} 7399 & 6 \\ 5538 & 9235 \end{array}\right),\left(\begin{array}{rr} 6161 & 12 \\ 1546 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5281 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$2452488192000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1 \) |
$3$ | split multiplicative | $4$ | \( 448 = 2^{6} \cdot 7 \) |
$5$ | split multiplicative | $6$ | \( 14784 = 2^{6} \cdot 3 \cdot 7 \cdot 11 \) |
$7$ | nonsplit multiplicative | $8$ | \( 10560 = 2^{6} \cdot 3 \cdot 5 \cdot 11 \) |
$11$ | nonsplit multiplicative | $12$ | \( 6720 = 2^{6} \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 73920.gp
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2310.u3, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{6}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-5}, \sqrt{-66})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-14}, \sqrt{66})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$6$ | 6.0.290358577152.13 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.0.48575324160000.87 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$8$ | 8.8.497871360000.2 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$8$ | 8.0.186606965293056.19 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$18$ | 18.6.5859025065106854728634977947901171859456000000000000.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 |
---|---|---|---|---|---|
Reduction type | add | split | split | nonsplit | nonsplit |
$\lambda$-invariant(s) | - | 3 | 1 | 0 | 0 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.