Properties

Label 7392.e
Number of curves $4$
Conductor $7392$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7392.e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7392.e do not have complex multiplication.

Modular form 7392.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{5} - q^{7} + q^{9} - q^{11} + 2 q^{13} - 2 q^{15} - 2 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 7392.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7392.e1 7392i2 \([0, -1, 0, -1072, -13148]\) \(266344154504/237699\) \(121701888\) \([2]\) \(4096\) \(0.47623\)  
7392.e2 7392i3 \([0, -1, 0, -712, 7480]\) \(78073482824/922383\) \(472260096\) \([2]\) \(4096\) \(0.47623\)  
7392.e3 7392i1 \([0, -1, 0, -82, -80]\) \(964430272/480249\) \(30735936\) \([2, 2]\) \(2048\) \(0.12966\) \(\Gamma_0(N)\)-optimal
7392.e4 7392i4 \([0, -1, 0, 303, -927]\) \(748613312/505197\) \(-2069286912\) \([2]\) \(4096\) \(0.47623\)