Show commands: SageMath
Rank
The elliptic curves in class 7392.e have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 7392.e do not have complex multiplication.Modular form 7392.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 7392.e
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
7392.e1 | 7392i2 | \([0, -1, 0, -1072, -13148]\) | \(266344154504/237699\) | \(121701888\) | \([2]\) | \(4096\) | \(0.47623\) | |
7392.e2 | 7392i3 | \([0, -1, 0, -712, 7480]\) | \(78073482824/922383\) | \(472260096\) | \([2]\) | \(4096\) | \(0.47623\) | |
7392.e3 | 7392i1 | \([0, -1, 0, -82, -80]\) | \(964430272/480249\) | \(30735936\) | \([2, 2]\) | \(2048\) | \(0.12966\) | \(\Gamma_0(N)\)-optimal |
7392.e4 | 7392i4 | \([0, -1, 0, 303, -927]\) | \(748613312/505197\) | \(-2069286912\) | \([2]\) | \(4096\) | \(0.47623\) |