Properties

Label 7392.a
Number of curves $4$
Conductor $7392$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7392.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7392.a do not have complex multiplication.

Modular form 7392.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - q^{7} + q^{9} - q^{11} - 2 q^{13} + 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 7392.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7392.a1 7392b3 \([0, -1, 0, -824, 9384]\) \(120993582536/6237\) \(3193344\) \([2]\) \(2560\) \(0.31739\)  
7392.a2 7392b2 \([0, -1, 0, -264, -1452]\) \(3989418056/307461\) \(157420032\) \([2]\) \(2560\) \(0.31739\)  
7392.a3 7392b1 \([0, -1, 0, -54, 144]\) \(277167808/53361\) \(3415104\) \([2, 2]\) \(1280\) \(-0.029186\) \(\Gamma_0(N)\)-optimal
7392.a4 7392b4 \([0, -1, 0, 111, 705]\) \(36594368/79233\) \(-324538368\) \([2]\) \(2560\) \(0.31739\)