Properties

Label 7360.h
Number of curves $1$
Conductor $7360$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 7360.h1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7360.h do not have complex multiplication.

Modular form 7360.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + 2 q^{7} - 2 q^{9} - 4 q^{11} - q^{13} + q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 7360.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7360.h1 7360s1 \([0, -1, 0, -41, -95]\) \(-7626496/575\) \(-588800\) \([]\) \(768\) \(-0.14448\) \(\Gamma_0(N)\)-optimal