Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-3308751x+2254688398\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-3308751xz^2+2254688398z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-4288140675x+105207606330750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-1459, 63792)$ | $5.0737927377901162787443262294$ | $\infty$ |
| $(907, -454)$ | $0$ | $2$ |
| $(1187, -594)$ | $0$ | $2$ |
Integral points
\( \left(-1459, 63792\right) \), \( \left(-1459, -62334\right) \), \( \left(907, -454\right) \), \( \left(1187, -594\right) \)
Invariants
| Conductor: | $N$ | = | \( 7350 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $121651938290039062500$ | = | $2^{2} \cdot 3^{2} \cdot 5^{12} \cdot 7^{12} $ |
|
| j-invariant: | $j$ | = | \( \frac{2179252305146449}{66177562500} \) | = | $2^{-2} \cdot 3^{-2} \cdot 5^{-6} \cdot 7^{-6} \cdot 13^{3} \cdot 9973^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6301264535006589439703825783$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.85245242275595210411732653996$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.016290927006418$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.363395584036093$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.0737927377901162787443262294$ |
|
| Real period: | $\Omega$ | ≈ | $0.18525531206844960578737495446$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.7597882280397651779345539276 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.759788228 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.185255 \cdot 5.073793 \cdot 64}{4^2} \\ & \approx 3.759788228\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 331776 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $5$ | $4$ | $I_{6}^{*}$ | additive | 1 | 2 | 12 | 6 |
| $7$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 503 & 834 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 599 & 828 \\ 234 & 767 \end{array}\right),\left(\begin{array}{rr} 829 & 12 \\ 828 & 13 \end{array}\right),\left(\begin{array}{rr} 281 & 6 \\ 700 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 4 \\ 824 & 833 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 427 & 6 \\ 834 & 835 \end{array}\right),\left(\begin{array}{rr} 217 & 6 \\ 792 & 799 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$185794560$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
| $3$ | split multiplicative | $4$ | \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $18$ | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
| $7$ | additive | $32$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 7350.bd
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 210.d3, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{105}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-14})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{21}, \sqrt{30})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{-21})\) | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $6$ | 6.0.40507614000.8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.8.497871360000.2 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.497871360000.6 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | 16.0.63456228123711897600000000.3 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
| $18$ | 18.6.22909706577448722066342070476562500000000.2 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | split | add | add | ss | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 4 | - | - | 1,1 | 1 | 1 | 1 | 3,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 1 | 0 | - | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.