Properties

Label 72828.k
Number of curves $4$
Conductor $72828$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 72828.k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 72828.k do not have complex multiplication.

Modular form 72828.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 6 q^{11} + 2 q^{13} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 72828.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
72828.k1 72828l4 \([0, 0, 0, -4755495, 3991547198]\) \(2640279346000/3087\) \(13905853553071872\) \([2]\) \(1492992\) \(2.3807\)  
72828.k2 72828l3 \([0, 0, 0, -294780, 63441569]\) \(-10061824000/352947\) \(-99368911847992752\) \([2]\) \(746496\) \(2.0341\)  
72828.k3 72828l2 \([0, 0, 0, -73695, 2466326]\) \(9826000/5103\) \(22987227302016768\) \([2]\) \(497664\) \(1.8314\)  
72828.k4 72828l1 \([0, 0, 0, 17340, 299693]\) \(2048000/1323\) \(-372478220171568\) \([2]\) \(248832\) \(1.4848\) \(\Gamma_0(N)\)-optimal