Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-294780x+63441569\) | (homogenize, simplify) | 
| \(y^2z=x^3-294780xz^2+63441569z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-294780x+63441569\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(400, 3087)$ | $1.1363529472547900880790291230$ | $\infty$ | 
| $(-629, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-629, 0\right) \), \((100,\pm 5913)\), \((238,\pm 2601)\), \((400,\pm 3087)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 72828 \) | = | $2^{2} \cdot 3^{2} \cdot 7 \cdot 17^{2}$ |  | 
| Discriminant: | $\Delta$ | = | $-99368911847992752$ | = | $-1 \cdot 2^{4} \cdot 3^{7} \cdot 7^{6} \cdot 17^{6} $ |  | 
| j-invariant: | $j$ | = | \( -\frac{10061824000}{352947} \) | = | $-1 \cdot 2^{14} \cdot 3^{-1} \cdot 5^{3} \cdot 7^{-6} \cdot 17^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0341481885335161347035428051$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.16281368801529518759125782945$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0728576630678985$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.417206354096948$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1363529472547900880790291230$ |  | 
| Real period: | $\Omega$ | ≈ | $0.33464988150274132449990420932$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 3\cdot2^{2}\cdot2\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $4.5633645497292763854944348453 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 4.563364550 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.334650 \cdot 1.136353 \cdot 48}{2^2} \\ & \approx 4.563364550\end{aligned}$$
Modular invariants
Modular form 72828.2.a.k
For more coefficients, see the Downloads section to the right.
| Modular degree: | 746496 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 | 
| $3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $7$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 | 
| $17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
| $3$ | 3B | 3.4.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1428 = 2^{2} \cdot 3 \cdot 7 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 409 & 1020 \\ 102 & 409 \end{array}\right),\left(\begin{array}{rr} 375 & 850 \\ 1190 & 1157 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1378 & 1419 \end{array}\right),\left(\begin{array}{rr} 1417 & 12 \\ 1416 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1138 & 1173 \\ 1343 & 764 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 167 & 0 \\ 0 & 1427 \end{array}\right)$.
The torsion field $K:=\Q(E[1428])$ is a degree-$7580418048$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1428\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 2601 = 3^{2} \cdot 17^{2} \) | 
| $3$ | additive | $8$ | \( 1156 = 2^{2} \cdot 17^{2} \) | 
| $7$ | nonsplit multiplicative | $8$ | \( 10404 = 2^{2} \cdot 3^{2} \cdot 17^{2} \) | 
| $17$ | additive | $146$ | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 72828.k
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 84.b2, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/6\Z\) | not in database | 
| $4$ | 4.2.2718912.1 | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{-3}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $6$ | 6.0.13925171376.8 | \(\Z/6\Z\) | not in database | 
| $8$ | 8.0.66532342173696.157 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.12220226113536.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.4.7392482463744.5 | \(\Z/12\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $18$ | 18.6.1384249457988183851328407781126906482688.1 | \(\Z/18\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ss | nonsplit | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | - | 1,1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | - | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
