Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3-x^2-729x+6880\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3-x^2z-729xz^2+6880z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-11667x+428654\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(20, -10)$ | $0$ | $2$ | 
Integral points
      
    \( \left(20, -10\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 7245 \) | = | $3^{2} \cdot 5 \cdot 7 \cdot 23$ |  | 
| Discriminant: | $\Delta$ | = | $5434771545$ | = | $3^{9} \cdot 5 \cdot 7^{4} \cdot 23 $ |  | 
| j-invariant: | $j$ | = | \( \frac{58818484369}{7455105} \) | = | $3^{-3} \cdot 5^{-1} \cdot 7^{-4} \cdot 23^{-1} \cdot 3889^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.59718753376480688663287949334$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.047881389430752040935256874879$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.854393635131775$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.531633621509468$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $1.3078399885400025527454788261$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot2\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $1.3078399885400025527454788261 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |  | 
BSD formula
$$\begin{aligned} 1.307839989 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.307840 \cdot 1.000000 \cdot 4}{2^2} \\ & \approx 1.307839989\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3840 |  | 
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 | 
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
| $7$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $23$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.6.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 19320 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 23 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 19313 & 8 \\ 19312 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 16913 & 16908 \\ 16910 & 7247 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 19314 & 19315 \end{array}\right),\left(\begin{array}{rr} 2419 & 2418 \\ 7258 & 16915 \end{array}\right),\left(\begin{array}{rr} 12872 & 19317 \\ 12875 & 19318 \end{array}\right),\left(\begin{array}{rr} 7564 & 1 \\ 23 & 6 \end{array}\right),\left(\begin{array}{rr} 2761 & 8 \\ 11044 & 33 \end{array}\right),\left(\begin{array}{rr} 7736 & 3 \\ 5 & 2 \end{array}\right)$.
The torsion field $K:=\Q(E[19320])$ is a degree-$397106888048640$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/19320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | good | $2$ | \( 1035 = 3^{2} \cdot 5 \cdot 23 \) | 
| $3$ | additive | $6$ | \( 805 = 5 \cdot 7 \cdot 23 \) | 
| $5$ | split multiplicative | $6$ | \( 1449 = 3^{2} \cdot 7 \cdot 23 \) | 
| $7$ | nonsplit multiplicative | $8$ | \( 1035 = 3^{2} \cdot 5 \cdot 23 \) | 
| $23$ | split multiplicative | $24$ | \( 315 = 3^{2} \cdot 5 \cdot 7 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 7245.n
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2415.a3, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{345}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{69}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{5}, \sqrt{69})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.8.14467563140625.1 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.2.918400908166875.1 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 23 | 
|---|---|---|---|---|---|
| Reduction type | ord | add | split | nonsplit | split | 
| $\lambda$-invariant(s) | 3 | - | 1 | 0 | 1 | 
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
